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ABSTRACT
Schlieren deflectometry aims at characterizing the deflections
undergone by refracted incident light rays at any surface point
of a transparent object. For smooth surfaces, each surface lo-
cation is actually associated with a sparse deflection map (or
spectrum). This paper presents a novel method to compres-
sively acquire and reconstruct such spectra. This is achieved
by altering the way deflection information is captured in a
common Schlieren Deflectometer, i.e., the deflection spectra
are indirectly observed by the principle of spread spectrum
compressed sensing. These observations are realized opti-
cally using a 2-D Spatial Light Modulator (SLM) adjusted
to the corresponding sensing basis and whose modulations
encode the light deviation subsequently recorded by a CCD
camera. The efficiency of this approach is demonstrated ex-
perimentally on the observation of few test objects. Further,
using a simple parameterization of the deflection spectra we
show that relevant key parameters can be directly computed
using the measurements, avoiding full reconstruction.

Index Terms— schlieren deflectometry, sparsity, spread
spectrum, compressive sensing, Chambolle-Pock

1. INTRODUCTION

Schlieren deflectometry aims at characterizing transparent ob-
jects by studying the deflections undergone by refracted inci-
dent light rays at any point of their surface point [1]. Com-
pared to other characterization techniques relying on interfer-
ometry, deflectometry is also insensitive to vibrations which
makes it very attractive for industrial deployment (e.g., for
quality control).

Consider a (thin) transparent object shined on one side
with a beam of parallel light rays, as shown in Fig. 1(left).
At each surface location p, the refracted light is deviated in
multiple directions characterized in a local coordinate system
(e1, e2, e3), with e1 parallel to incident light beam. Using the
spherical coordinates (θ, ϕ) in this system (see Fig. 1(left)),
the resulting deflection spectrum s̃p(θ, ϕ) ∈ R+ represents
the flux of light deviated in the direction (θ, ϕ). The evolu-
tion of deflection spectra along the object surface encodes in-
formation about its local curvature. This is why deflectometry
is often used for characterizing transparent object surfaces.

In this paper, s̃p is conveniently represented by its projec-
tion in the Πp = e2e3 plane, i.e., according to the projected
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Fig. 1: Left, illustration of a deflection spectrum. Right, a typical (projected)
deflection spectrum sp for a plano convex lens of optical power 25.12D.

function sp(r(θ), ϕ) = s̃p(θ, ϕ) with r(θ) = tan θ. More-
over, the object surface is assumed sufficiently smooth for be-
ing parametrized by a projection of p in the same plane (on a
arbitrary fixed origin), so that p is basically a 2-D vector.

For most objects (e.g., with smooth surfaces) deflections
at any location p occur in a limited range of angles. The
deflection spectra therefore tend to be naturally sparse in
plane Πp or in some appropriate basis of this domain (e.g.,
wavelets). Fig. 1(right) shows an example of a discretized
deflection spectrum sp for one location of a plano-convex
lens obtained using the setup described in Sec. 2. The white
spot in the image signifies that deflections occur at only a
few angles (as governed by classical optics) and deflections
elsewhere are negligible.

Measuring a deflection spectrum sp for every p is not
straightforward. The optical setup described in Sec. 2 mea-
sures them indirectly by optical comparison with a certain
number of programmable modulation patterns. To maximize
the amount of information collected in this process, we ex-
ploit the sparse nature of spectra in each plane Πp and use
the framework of spread spectrum1 compressive sensing [2],
described in Sec. 4. From a fine calibration of the system rela-
tive to its intrinsic noise, our approach is then experimentally
validated using deflectometric measurements and the numer-
ical spectrum reconstruction results are presented in Sec. 5.
Further, from the possibility of performing signal process-
ing in the compressed domain [3, 4], we also show in Sec. 6
that for localized deflection spectra summarized by a few op-
tical parameters (e.g., location and width of the main peak)
the compressed optical observations themselves can be pro-
cessed. This is aimed at extracting the relevant information at
a smaller number of measurements than those required for a
full spectrum reconstruction.

1“Spread Spectrum” is not related to the studied deflection “spectrum”
but it refers to the signal frequency spectrum.
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Fig. 2: A 2-D schematic of Schlieren deflectometer.

2. OPTICAL SETUP AND NOTATIONS

Deflection spectra can be measured by the Schlieren deflec-
tometer represented in Fig. 2. Its key components are (i) a
Spatial Light Modulator (SLM), (ii) the Schlieren lens with
focal length f , (iii) the Telecentric System (TS) and (iv) the
Charged Coupled Device (CCD) camera collecting the light.

The object to be analyzed is placed in between the
Schlieren lens and the telecentric system. It is shined on
its left by a light source and, thanks to the telecentric system,
only the parallel light rays emerging out from the object are
collected by the CCD. Moreover, up to a flipping around the
optical axis, each location p on the object, at a distance τ from
the optical axis O (dashed line), is probed by a corresponding
CCD pixel also at a distance of τ from O. Each location p is
thus in one-to-one correspondence with a CCD pixel and we
will sometimes consider p as CCD pixel location.

From classical optics, a light ray that is incident on lo-
cation p at an angle θp originates from the light source at a
distance of ∆x = f tan θp from the optical axis. Likewise,
the light rays originating at different locations on the source
have different incident angles at p. Since we can always vir-
tually invert the light propagation in the system, everything
works as if the object was shined on its right by a beam of
parallel light rays. Therefore, up to a global scaling by f ,
the SLM plane is actually the local plane Πp of the deflection
spectrum occurring at p. Modulating the SLM corresponds
to modulating sp, while the light collected in CCD pixel p is
just an inner product of sp with the modulation.

If we generate M such modulations φi ∈ RN with 1 ≤
i ≤ M in the SLM of N pixels, considering the discrete na-
ture of the CCD camera (having NC pixels), the discretized
deflection spectra are observed through

yk = Φsk + n, 1 ≤ k ≤ NC, (1)

where ΦT = (φ1, · · · ,φM ) ∈ RN×M is the sensing matrix,
k is a CCD pixel index, sk ∈ RN is the discretized spectrum
at the kth pixel/object location, and n models the measure-
ment noise (assumed Gaussian). Notice that the SLM and the
CCD 2-D grids are represented as 1-D spaces in order to ease
the notation, so that Φ is then a sensing 2-D matrix acting on
1-D vectors.

The quest now is to optimize the design of Φ in order to
maximize the spectrum information captured in each yk, i.e.,
using Compressed Sensing theory.

3. PRIOR WORK

A well known example of inner products based imaging sys-
tem is the Rice University’s single pixel camera [5]. This
camera uses a single photosensor to capture the inner prod-
ucts between the scene to be imaged and random binary mod-
ulation patterns, realised using a micro-mirror array. In our
deflectometric system, each CCD pixel behaves like a single
pixel camera, which poses a great computational challenge
for reconstruction. We can notice also that a binary SLM
modulation for compressive imaging is also advocated in [6]
for performing random convolutions of images. However, this
method modulates the Fourier transform of the signal of inter-
est and not its spatial domain representation.

The previous use of Schlieren Deflectometer is in the
Phase Shifting Schlieren (PSS) system. PSS quantitively
measures the deviation angles from the deflectometric mea-
surements, by assuming single deflection for each object
location. It overcomes several calibration issues of the tradi-
tional deflectometry by using multiline phase shifted spatial
filters in the SLM [7]. In this case, the CCD pixel values
yk directly encode the deviation angle of the corresponding
object location index k. By making several measurements
with phase shifted sinusoidal modulations as Φ, the devia-
tion angle is then numerically decoded from the yk, using
n-step algorithms [8]. PSS has been successfully used in
tomographic applications such as refractive index map re-
construction [9, 10]. However, the phase shifting method is
unable to recover the full deflection spectra or to estimate
several main deflection angles per point. Moreover, the use of
non-binary modulation patterns brings in the problem of non-
linearity in the SLM response. This is one of the reasons why
we advocate using binary modulation patterns as described in
Sec. 5.

4. SPREAD SPECTRUM COMPRESSIVE SENSING

Compressive Sensing (CS) shows that any signal x = Ψα ∈
CN , having a sparse representation in an orthonormal spar-
sity basis Ψ ∈ CN×N , i.e., ‖α‖0 := #{j : αj 6= 0} ≤
K � N , can be tractably recovered from a few corrupted
linear measurements of the form

y = Γ∗ΩΨα + n, (2)

where ∗ denotes the conjugate transpose, Γ ∈ CN×N is an
orthonormal sensing basis, ΓΩ is the submatrix formed by
restricting the columns of Γ to those belonging to Ω ⊂ [N ] :=
{1, · · · , N} and n is a Gaussian noise vector.

In particular, if Ω has size M and is drawn uniformly at
random in [N ], and if Γ and Ψ are incoherent, meaning that
the coherence µ :=

√
N max1≤i,j≤N |〈Γj ,ψi〉| is very close

to 1, then,
M = O

(
µ2K log4(N)

)
measurements are enough to recover a good estimate of
x [11]. This reconstruction is performed by solving the
following convex optimization
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α̂ := arg min
α̃∈CN

‖α̃‖1 subject to ‖y −Φα̃‖2 ≤ ε, (3)

where Φ = Γ∗ΩΨ, and ε is a bound on ‖n‖2 ≤ ε. Under the
previous conditions, the theory guarantees that [12]

‖α− α̂‖2 = O
(‖α−αK‖1√

K
+ ε

)
(4)

holds with a probability at least 1 −N−γ log3(N), where αK
is the best K-term approximation of the vector α.

The number of the measurements scales quadratically as µ
and hence it is desirable to have the two bases as incoherent as
possible to make µ close to 1. To circumvent this problem, [2]
cleverly makes the sensing and sparsity bases incoherent by a
simple pre-modulation, or spread spectrum, of the data vector
x. This technique is optimal for universal sensing basis, i.e.,
when all the entries of Φ have the same complex amplitude,
as in Fourier and Hadamard bases.

Mathematically, with random modulation, the sensing
matrix becomes Φ = Γ∗ΩMΨ, where M = diag(m) is a
diagonal matrix whose diagonal is a random vector m such
that |mi| = 1, e.g., a Steinhaus or Rademacher sequence. In
this case, we need

M ≥ CρK log5(N)

measurements in order to recover a solution α? of (3) sat-
isfying (4) with a probability at least 1 − O(N−ρ), for some
0 < ρ < log3(N). Noticeably, the coherence has disappeared
from the condition implying that with spread spectrum and
universal sensing basis, the recovery guarantee is universal,
irrespective of the sparsity basis. We see in next section how
to exploit the spread spectrum method in our optical setup.

5. DEFLECTION SPECTRUM RECONSTRUCTION

We propose to combine the Schlieren deflectometer of Sec. 2
with the spread spectrum CS principles described above.

Optical Sensing: Since it is essential to have real valued
sensing basis and spread spectrum vector, as allowed by [2],
we use the Hadamard (universal) basis H for sensing, with
HHT = HTH = N · Id and each element Hij ∈ {±1},
combined with a random Rademacher vector m, i.e., mi ∈
{±1} independently with equal probability.

Since the SLM accepts only positive values, once the ran-
dom set Ω ⊂ [N ] has been drawn, the corresponding sensing
matrix Φ = HT

ΩM must be suitably biased and scaled as

Φ = 1
2 (Φ + 1N1TN ) ∈ {0, 1}M×N , (5)

where 1N ∈ {1}N is the vector of ones. The choice of
Hadamard makes the biased sensing binary. This has inter-
esting advantages in the optical setup since it avoids any non-
linear response of the SLM for non-binary values.

Moreover, thanks to an extra measurement of each sk, i.e.,
the value zk = 〈1N , sk〉 obtained by an entirely transparent
SLM, any measurement vector yk = Φsk can be debiased by

yk := Φsk = 2yk − zk 1M . (6)

Up to a correct evaluation of the noise, which corrupts yk, zk
and the debiasing process (6), we can therefore reconstruct
sk from the unbiased yk.

Noise estimation: If there is no test object, then by classi-
cal optics the measured deflection spectrum is constant in all
CCD pixels and corresponds to a simple disk centered on the
origin of the spectrum domain. We denote it as sno. The disk
diameter is proportional to the pinhole diameter of the system
(see Fig. 2). This prior information aids us in calibrating the
system and in estimating the noise level on the measurements.

From actual measurements in the absence of test object,
we obtain, on an arbitrary CCD pixel, yno = Φ(sno +ns) +
ny , where ns and ny are the unknown signal and obser-
vation noises. After a small calibration of the SLM origin,
and up to a small optimization of the disk height in sno,
we can therefore compute a bound on the noise power as
ε = ‖Φns+ny‖ = ‖yno−Φsno‖. We can either obtain this
value for every M or estimate it for M = N only and scale
the result as ε(N) =

√
M + 2

√
M ε(M)/

√
N for M < N .

Reconstruction Method: For the reconstruction, we select
the Daubechies 9/7 wavelet basis as our sparsity basis [13].
This offers a sparser representation of the deflection spectra
than the canonical (Dirac) basis. To reconstruct the deflection
spectrum at any location k, an estimate of the sparse wavelet
coefficients α̂k is obtained by solving (3) with the ε estimated
above. The spectrum is then estimated by ŝk = Ψ∗α̂k. To
solve (3), we used the Chambolle-Pock algorithm, a first or-
der primal-dual method for solving convex optimization prob-
lems using proximal operators [14].

For evaluating compressive reconstruction performance,
(3) was solved with M = N measurements to obtain the
reference reconstruction s̃k. Reconstructions for M < N
were compared with s̃k using the (output) Signal-to-Noise
Ratio oSNR := 20 log10(‖s̃k‖2/‖s̃k − ŝk‖2).

Experimental Results2: For experimental evaluation, we
considered two plano-convex lenses of optical powers 10.03D
and 60D, and restricted the size of spectrum to 64 × 64 cen-
tered around the SLM origin, resulting in N = 4096. For
5 CCD locations, 10 independent reconstruction trials were
performed for several values of M , by randomly drawing a
new Ω ⊂ [N ] every time.

Fig. 3(left) shows a deflection spectrum reconstructed us-
ing the full set of measurements for the lens with 60D op-
tical power and Fig. 3(right) shows the reconstruction with
400 measurements (M/N ≈ 10%). Note that the spectrum
is well localized, corroborating our initial observation. Fig. 4
shows the plot of oSNR versus the number of measurements
M/N (in %), averaged over the trials and locations. The per-
formance curves for both the lenses almost overlap, and the

2Computational resources were provided by the supercomputing facilities
of the Université catholique de Louvain (CISM/UCL) and the Consortium
des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI)
funded by the F.R.S.-FNRS under convention 2.5020.11.
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Fig. 3: Left, an example of reconstruction using full set of measurements and
right, only 10% of measurements.
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Fig. 4: Average reconstruction oSNR (in dB) as a function of M/N .

oSNR improves as M/N increases. Though the absolute val-
ues of oSNR seem low, its significance has be understood in
the light of the input SNR, which is approximately computed
as iSNR := 20 log10(‖Φsno‖2/‖yno−Φsno‖2) ' 4.34 dB.
The horizontal dotted line on the plot indicates the iSNR for
our experiments, and it is clear that the reconstruction proce-
dure improves the oSNR, beyond the iSNR, thereby demon-
strating the ability of CS reconstruction of deflection spectra
in low input SNR regime.

6. DEFLECTION SPECTRUM CHARACTERIZATION

Suppose we are interested in summarizing the deflection spec-
tra by a few parameters that characterize them at each loca-
tion. For example, we could summarize a spectrum by the
location of the bright feature it contains. To address this, we
propose the following robust method to localize the feature.

Assuming that the feature is circular and its radius ρ
can be known a priori, the feature can be localized using a
matched filter. To this end, we employ a template Gρ, which
contains a two-dimensional Gaussian of width ρ at its center.
To localize the feature in a spectrum s̃k we simply translate
Gρ over the support of the spectrum and find the best trans-
lation τ̂ ∈ R2 that maximizes the correlation between the
spectrum and the translated template TτGρ. By letting gρτ to
denote the vectorized form of TτGρ, we solve

τ̂k = arg max
τ
|〈s̃k, gρτ 〉|. (7)

With an abused terminology we designate the translation
parameters τ̂ as the centroids of the spectral features. These
centroids also provide local information about the mean de-
flection angles at various locations.

In order to characterize an object using the centroids de-
fined in (7), we have to reconstruct the spectra at all NC lo-
cations individually and then compute the centroids, which
requires huge computational time. It is essential therefore to
explore the possibility of computing the centroids from the
measurements yk, without even reconstructing the spectra.

Davenport et al. have proposed the idea of performing
common signal processing tasks such as detection and clas-

 

 

A
b
so
lu
te

er
ro
r
(p
ix
el
)

M/N

Unit pixel error

Lens 1: 10.03D
Lens 2: 60D

2.4 3.7 4.9 6.1 7.3 8.5 9.8 11.0 12.2
0.4

0.6

0.8

1

1.2

1.2

1.4

1.6

1.8
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sification using the compressive samples obtained using ran-
dom measurements [3, 4]. In the same spirit, we compute the
centroids directly from the measurements yk defined in (6).
To accomplish this compressive centroid estimation, we carry
the definition of the centroid of the spectrum (7) into the mea-
surement domain and solve

τ̃k = arg max
τ
|〈ΦTyk, g

ρ
τ 〉|. (8)

Notice that solving (8) is the same as solving (7), but in-
stead of using s̃k, obtained by solving (3), we simply compute
ΦTyk and use it for centroid estimation.

For experimental evaluation, we retained the configura-
tion described in Sec. 5. For each of the 5 CCD locations
k, the centroid τ̃k was computed by solving (8). A “ground
truth” centroid τ̂k was also found by solving (7), with sk re-
constructed (solving (3)) using fullM = 4096 measurements.

Fig. 5 shows the centroid computation error ‖τ̂ − τ̃‖2 as
a function of the number of measurements M/N . Each data
point is an average over 50 independent trials for each value of
M and over all the locations. The horizontal dotted line indi-
cates a unit pixel error and it can be seen that the compressive
centroid estimation achieves sub-pixel accuracy, even with the
number of measurements as low as 2.4% (50 measurements)
for the 60D lens, and about 3.7% for the 10.03D lens. This
demonstrates the ability of the measurements to capture suf-
ficient information about the feature of the spectra.

7. CONCLUSIONS AND PERSPECTIVES

This paper presents a novel approach to perform schlieren de-
flectometry using compressive sensing principles. In contrast
to the existing system, the proposed approach enables the re-
construction of deflection spectra, instead of a single deflec-
tion angle at each location. Though it is computationally in-
tensive, spectra reconstruction leads to better characterization
of the studied object. The empirical results also demonstrate
the capability of our method to perform meaningful infer-
ences about the deflection spectra using only the compressive
measurements, without involving any reconstruction.

Several challenges remain to be addressed in the future
work. It is of foremost importance to fully understand the
noise model to tune the reconstruction algorithm. Also, in-
corporating further priors such as non-negativity helps the re-
construction. We also intend to develop approaches to recon-
struct multiple spectra, corresponding to neighbouring CCD
pixels, by exploiting the correlation amongst them.
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