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ABSTRACT
Automatic Relevance Determination (ARD) priors have been
widely used to induce sparse reconstructions in Bayesian
compressive sensing approaches. In this paper, we propose
a new sparsity-promoting prior coined as Double Lomax
prior. Its connection with the generalized inverse Gaussian
distribution and Rayleigh distribution leads to a tractable
full Variational Bayesian (VB) inference procedure here. It
is shown that the proposed update procedure includes the
canonical ARD update procedure as a special case, but pro-
vides a better global convergence performance and results in
improved signal reconstructions.

Index Terms— Sparsity-promoting prior, Double Lomax
distribution, automatic relevance determination (ARD), Vari-
ational Bayesian (VB), compressive sensing

1. INTRODUCTION

Compressive sensing (CS) theory [1–3] proposes new tech-
niques to recover unknown sparse signals from underdeter-
mined linear measurements and has become one of the main
research topics in the signal processing area with various ap-
plications [4–10]. The CS system can be modeled as

y = Φx + e, (1)

where y is a N × 1 measurement vector, x is a M × 1 s-
parse vector, e is white Gaussian noise and Φ is the N ×M
measurement matrix, with N < M . The associated recon-
struction problem is given by

min
x
‖y −Φx‖22 + ρ‖x‖0, (2)

where ‖x‖0 denotes the number of nonzero elements in the
vector x, ρ is the model parameter that controls the relative
importance applied to error term and sparseness term. Since
Eqn.(2) requires a combinatorial search which is NP-hard,
linear programming methods with convex relaxation `1 nor-
m [2, 11], reweighted norm algorithms [12, 13] and greedy
methods [14, 15] have been wildly developed as alternatives.

A main issue of these methods is that the uncertainty of
signal reconstructions is generally obscure. Recently, several

algorithms have been investigated with in the Bayesian frame-
work [16–19], with the advantage of providing probabilistic
estimates that can guide adaptive measurement matrix design.
Moreover, the Bayesian CS algorithms naturally model the
unknown signal along with the model parameters, which re-
sult in fully automated algorithms estimating all required pa-
rameters.

In these Bayesian CS algorithms, the Automatic Rele-
vance Determination (ARD) prior [20] is generally used, due
to be non-log-concave for strong sparsity promotion and be
Gaussian-integral-representable for efficient Bayesian analy-
sis, simultaneously. It is defined by

ARD (x) =

∫ ∞
0

N
(
x

∣∣∣∣0, 1

γ

)
G (γ |a, b ) dγ, a→ 0, b→ 0,

(3)
where G (γ |a, b ) is the Gamma prior defined as G (γ |a, b ) =
ba

Γ(a)γ
a−1 exp (−bγ). Eqn.(3) invokes a two-level hierarchi-

cal prior model.
In this paper, we also formulate the CS reconstruction

problem from a Bayesian perspective. Despite of the two-
level ARD prior, we propose a new non-log-concave sparsity
prior referred to as Double Lomax Prior, which corresponds
to a three-level hierarchical Bayes model. A fully VB infer-
ence procedure is derived to solve for the CS problem using
Double Lomax priors. It is shown that the proposed update
procedure includes the canonical ARD update procedure as a
special case, but results in a better global convergence perfor-
mance due to the existence of extra latent variable.

2. DOUBLE LOMAX PRIOR AND ITS PROPERTIES

The proposed Double Lomax prior can be derived from t-
wo back-to-back spliced Lomax distributions (also known as
Pareto II distribution [21]). That is,

DL (x |0, η, f ) =
η

2

(
1 +

η |x|
f

)−(f+1)

, η > 0, f > 0.

(4)
It can be shown thatDL (x |0, η, f ) > 0,

∫ +∞
−∞ DL (x |0, η, f ) =

1 and DL (−x |0, η, f ) = DL (x |0, η, f ). Thus Eqn.(4) is a
probability distribution function of x defined on (−∞,+∞),
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symmetrical about zero. η is the scale parameter, f is the
shape parameter, and 0 refers to zero-mean.

Theorem 1. Double Lomax prior in Eqn.(4) is log-convex.
When f → +0, Double Lomax prior becomes proportional to
Jeffreys prior; when f → +∞, Double Lomax prior becomes
Laplace prior.

Proof. The logarithm of density function Eqn.(4) is

lnDL = ln
(η

2

)
− (f + 1) ln

(
1 +

η |x|
f

)
. (5)

It is continuous on (−∞ +∞), and the second derivative is

d2

dx2
lnDL = (f + 1)

η2

(f + η |x|)2

{
> 0 f 9 +∞
= 0 f → +∞ . (6)

Thus, Double Lomax prior is log-convex for any f > 0 and
is strictly log-convex for f 9 +∞, even though it does not
have first and second derivative at the point x = 0. Moreover,
note that

lim
f→+0

DL (x |0, η, f ) ∝ 1

|x|
. (7)

lim
f→+∞

DL (x |0, η, f ) =
η

2
exp (−η |x|) . (8)

Thus when the shape parameter goes to zero, Double Lo-
max prior is proportional to the noninformative Jeffreys pri-
or p(x) ∝ 1/|x|; when the shape parameter goes to infinite,
Double Lomax prior asymptotically becomes the Laplace pri-
or with inverse-scale η.

Remark 1. Theorem 1 shows that the implicit penalty in-
duced by Double Lomax prior,− lnDL (x |0, η, f ), is (strict-
ly) concave, spanning from the convex `1-norm penalty
(when f → +∞ ) to the strongly concave log-sum penal-
ty
∑

log (|x|) (when f → +0).

Theorem 2. Double Lomax prior in Eqn.(4) can be repre-
sented as a Gaussian integral. Given Gaussian prior N (·),
Exponential prior E (·) and Gamma prior G (·), we have

DL =

∫ ∞
0

∫ ∞
0

N (x |0, α ) E
(
α

∣∣∣∣η2υ2

2

)
G (υ| f, f) dαdυ.

(9)

Proof. Eqn.(4) can be expressed as,

DL =
η

2
ff+1(f + η |x|)−(f+1)

=
Γ(f + 1)

Γ(f)

η

2
ff (f + η |x|)−(f+1)

=
ηff

2Γ(f)

∫ ∞
0

υf exp {−υ (f + η |x|)}dυ

=

∫ ∞
0

ηυ

2
exp {−ηυ |x|} ff

Γ(f)
υf−1 exp {−fυ} dυ

=

∫ ∞
0

L (x |0, ηυ )G (υ |f, f ) dυ.

(10)

Meanwhile, note that a Laplace prior has hierarchical repre-
sentation

L (x |0, λ ) =

∫ ∞
0

N (x |0, α ) E
(
α

∣∣∣∣λ2

2

)
dα =

λ

2
exp (−λ |x|) .

(11)
Substituting Eqn.(11) into Eqn.(10) gives Eqn.(9).

Remark 2. Eqn.(9) corresponds to a three-level hierarchi-
cal Bayes model with two latent variables α and υ. On the
first level, random variables are generated from zero-mean
Gaussian priors with independent variance α. On the second
level, a set of α are generated from exponential priors with
independent inverse-scales, which are formed by 1

2η
2 multi-

plying a set of independent variables υ2. On the third level,
independent υ are generated from a Gamma prior with two
parameters of the same value.

3. BAYESIAN MODELING

In Bayesian modeling, each unknown variable is described by
a probability distribution. We assume independent zero-mean
Gaussian over noise e,

p (y |x, β ) =

N∏
n=1

N
(
yn
∣∣φnx, β−1

)
= N

(
y
∣∣Φx, β−1

)
,

(12)
where φn is the nth row of Φ and β is precision. We specify
a Gamma prior for β:

p (β) = G (β |aβ , bβ ) . (13)

We assume independent Double Lomax priors over the
signal x. Without loss of generality, the scale parameter η is
assumed to be unity. Using the hierarchical representation in
Eqn.(9), we have

p (x |α ) =

M∏
m=1

N (xm| 0, αm) = N
(
x|0,Λ−1

)
, (14)

p (αm |υm ) = E
(
αm

∣∣∣∣υ2
m

2

)
, (15)

p (υm |f ) = G (υm |f, f ) , (16)

where αm is the latent variable modifying the variance of
the Gaussian Scale Mixtures model, υm is the latent vari-
able modifying the inverse-scale of exponential prior, Λ =
diag(α−1

m ) denotes the precision matrix.
Therefore, the joint distribution of the measurements and

all the unknown parameters can be factorize as

p(y, β,x,α,υ) = p(y |x, β )p(x |α )p(α |υ )p(υ |f )p(β).
(17)
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4. INFERENCE PROCEDURE

The Bayesian inference is based on the posterior

p(x,α,υ, β |y ) =
p(y, β,x,α,υ)

p(y)
. (18)

However the Bayesian integral p(y) is analytically intractable.
Therefore, approximation methods are required. In this work,
we incorporate a Variational Bayesian (VB) approach [22–24]
for the inference, which approximates the posterior by intro-
ducing a factorable distribution, found by minimizing the
Kullback-Leibler divergence between the posterior and its
approximation. In this work, we factorize the approximation
distribution q(x,α,υ, β) as q(x)q(α)q(υ)q(β).

To compute q(x), we only need to consider those terms
that are functionally dependent on x. Because p(x |α ) is the
conjugate prior for x, q̂(x) is still a Gaussian distribution

q̂ (x) ∝ exp 〈ln p(y |x, β ) + ln p(x |α )〉β,α
= N (x|µx,Σx) ,

(19)

with
µx = 〈β〉ΣxΦTy. (20)

Σx =
(
〈β〉ΦTΦ + 〈Λ〉

)−1

. (21)

where 〈Λ〉 = diag(
〈
α−1
m

〉
).

From Eqn.(14) and Eqn.(15) we observe that the terms
involving α are composed of M -order multiplicative terms
over αm, xm and υm, a further factorization of this approxi-
mate posterior density becomes:

q(α) =

M∏
m=1

q(αm). (22)

And

q̂ (αm) ∝ exp〈ln p (xm |αm ) + ln p (αm |υm )〉xm,υm

∝ N
(√
〈x2
m〉
∣∣∣ 0, αm) E (αm

∣∣∣∣∣
〈
υ2
m

〉
2

)
,

(23)

where 〈
x2
m

〉
= µ2

x(m) + Σx(mm). (24)

·(m) and ·(mm) denote the mth element of a vector and the
mth diagonal element of a matrix, respectively. By further
inspecting its normalization, q̂(αm) turns out to be a General-
ized Inverse Gaussian Distribution (GIG) with the probability
function GIG(z |ω, χ, ψ) = (ψ/χ)ω/2

2Kω(
√
χψ)

z(ω−1) exp
(
− 1

2 (χz + ψz)
)
,

whereKω(·) is the modified Bessel function of the third kind.
Hence, here q̂(αm) is GIG

(
αm
∣∣ 1

2 ,
〈
x2
m

〉
,
〈
υ2
m

〉
). With

moment analysis, we have

〈
α−1
m

〉
=

√
〈υ2
m〉
〈x2
m〉
, (25)

〈αm〉 =
〈
α−1
m

〉−1
+
〈
υ2
m

〉−1
. (26)

The approximate posterior density of υ can be factorized
as

q(υ) =

M∏
m=1

q(υm). (27)

And

q̂(υm) ∝ exp 〈ln p (αm |υm ) + ln p (υm |f )〉αm

∝ exp

(
(f + 1)lnυm −

〈αm〉
2

υ2
m − fυm

)
.

(28)

Eqn.(28) contains logarithmic, square and linear terms, thus
is not in correspondence with any standard distribution. How-
ever, when noninformative hyperprior is assumed, f is setted
to zero, q̂(υm) becomes the Rayleigh distribution with the
probability

R(z |λ ) =
z

λ2
exp

(
− z2

2λ2

)
. (29)

Here q̂(υm) isR(υm

∣∣∣∣ 1√
〈x2

m〉
). Therefore,

〈
υ2
m

〉
=

2

〈αm〉
=

2〈
α−1
m

〉−1
+ 〈υ2

m〉
−1
. (30)

Since Gamma distribution is conjugate to the precision of
Gaussian function, we still obtain a Gamma distribution for
β:

q̂(β) = G(β |Aβ , Bβ ), (31)

〈β〉 = Aβ/Bβ , (32)

where

Aβ =
N

2
+ aβ , (33)

Bβ =
1

2
trace

(〈
(y −Φx)(y −Φx)T

〉 )
+ bβ , (34)

and〈
(y −Φx)(y −Φx)T

〉
= yyT−2ΦµxyT+Φ(µxµx

T+Σx)ΦT.
(35)

Now let us inspect the relations between the proposed up-
date procedure and the ARD update procedure. As noted pre-
viously, when the noninformative hyperprior of the third level
is assumed (f → +0), the Double Lomax prior becomes e-
quivalent to the ARD prior, both are proportional to the nonin-
formative Jeffreys prior. Consider Eqn.(25) and Eqn.(30) that
induced by the Double Lomax priors, it can be proved that if
just these two equations iterate to convergence, then the result
is equivalent to directly setting

〈
α−1
m

〉
=

1

〈x2
m〉
, (36)
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which is the exact ARD update [25]. However, if the proce-
dure is applied until all update equations are iterated to con-
vergence, the difference is shown: in contrast to the ARD’s〈
α−1
m

〉
(l+1)

that depends only on
〈
x2
m

〉
(l)

, the Double Lo-

max’s
〈
α−1
m

〉
(l+1)

depends on
〈
x2
m

〉
(l)

and
〈
υ2
m

〉
(l)

, while〈
υ2
m

〉
(l)

is computed from all the former updates of
〈
α−1
m

〉
,

including
〈
α−1
m

〉
(l−1)

,
〈
α−1
m

〉
(l−2)

, . . . ,
〈
α−1
m

〉
(0)

. Thus the
Double Lomax procedure leads to a smoother update trace. In
other words, if

〈
υ2
m

〉
(l)

is considered as a smooth regulariza-
tion, then the regularization effect can be propagated to oth-
er update variables by the alternating-update strategy of VB
inference, leading to other’s smoother update traces. Con-
sequently, the smooth regularization effect may prevent the
algorithm from a large deviation of the right direction when
there are some disturbances or unreliable updates during the
process of convergence.

5. EXPERIMENTS

In this section, the proposed VB-Double Lomax formulation
(denoted with DL) is compared with the equivalent formu-
lation with ARD prior (denoted with ARD). Furthermore, a
hybrid formulation (denoted by Hybrid), which with first K
iterations employing DL and the rest employing ARD until
convergence is also considered here for a trade-off between
performance and speed. This hybrid approach is based on the
observation that ARD tends to converge to a local minima at
early iterations.

In the experiments reported below, the hybrid number
K = 20. Following default CS setup is used. ΦCS is induced
by sampling columns i.i.d. from a unit sphere in RN . T
coefficients at random locations of the signal are drawn from
four different probability distributions, and the rest (M − T )
of the coefficients are set to zero. The nonzero coefficients of
the sparse signals are realizations of the uniform ±1 random
spikes. We fix M = 256, T = 80, and vary the number of
measurements N . The reconstruction error is calculated as
‖x̂− x‖2/‖x‖

2
, where x̂ and x are the estimated and true

signals. Each experiment is carried out 200 times and the
average results are reported. Fig.1 reports the number of
measurements versus reconstruction error with error ranges
(one standard deviations). It is shown that DL provides im-
proved overall reconstruction performance over ARD for a
reasonable number of measurements, and Hybrid provides a
favorable performance close to DL. Fig.2 reports the number
of iterative steps required for convergence versus the number
of measurements. DL shows a slower convergence rate than
ARD, but Hybrid has a comparable convergence rate as ARD.

6. CONCLUSION

In this paper, we propose a new non-log-concave sparsity pri-
or, referred to as Double Lomax Prior, which corresponds to a

Fig. 1: Number of measurements versus reconstruction error
with error ranges (one standard deviations).

140 150 160 170 180 190 200
50

100

150

200

250

300

350

400

Number of Measurements

N
um

be
r 

of
 It

er
at

iv
e 

S
te

ps

 

 

DL
ARD
Hybrid

Fig. 2: The number of iterative step required for convergence.

three-level hierarchical Bayes model. A VB inference proce-
dure is introduced to solve for the CS reconstruction problem
using Double Lomax priors. Compare to the canonical ARD
update, the proposed update procedure has one more latent
variable which has the smoothness effect resulting in an im-
proved performance. A hybrid formulation of Double Lomax
and ARD is also considered as a trade-off between perfor-
mance and computational speed. Experiments show favors of
the proposed approach.
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