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ABSTRACT

Given a set of integers, one can easily construct the set of their
pairwise distances. We consider the inverse problem: given
a set of pairwise distances, find the integer set which realizes
the pairwise distance set. This problem arises in a lot of fields
in engineering and applied physics, and has confounded re-
searchers for over 60 years. It is one of the few fundamental
problems that are neither known to be NP-hard nor solvable
by polynomial-time algorithms. Whether unique recovery is
possible also remains an open question.

In many practical applications where this problem occurs,
the integer set is naturally sparse (i.e., the integers are suffi-
ciently spaced), a property which has not been explored. In
this work, we exploit the sparse nature of the integer set and
develop a polynomial-time algorithm which provably recov-
ers the set of integers (up to linear shift and reversal) from the
set of their pairwise distances with arbitrarily high probability
if the sparsity isO(n1/2−ε). Numerical simulations verify the
effectiveness of the proposed algorithm.

Index Terms— phase retrieval, turnpike problem, sparse
signals

1. INTRODUCTION

We consider the problem of reconstructing a set of integers
from the set of their pairwise distances. For example, con-
sider the set V = {2, 5, 13, 31, 44}. Its pairwise distance set
is given by W = {0, 3, 8, 11, 13, 18, 26, 29, 31, 39, 42}. We
look at the problem of recovering the integer set V from the
pairwise distance set W 2.

This recovery problem dates back to the origins of the
classical phase retrieval problem in the 1930s [1, 2] and has
received a lot of attention from researchers. More recently, it
has arisen in computational biology, specifically in restriction
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2If V has a pairwise distance set W , then sets c ± V also have the same
pairwise distance set W for any integer c. These solutions are considered
equivalent, and in all the applications it is considered good enough if any
equivalent solution, i.e., up to linear translation and flipping, is recovered.

site mapping of DNA [3]. This problem has also been posed
as a computational geometry problem [4].

1.1. Phase Retrieval

Many measurement systems in practice can output only the
squared-magnitude of the Fourier transform. Phase informa-
tion is completely lost, because of which signal recovery is
difficult. This is a fundamental problem in many fields, in-
cluding optics [5], X-ray crystallography [6], astronomical
imaging [7], speech processing [8], particle scattering, elec-
tron microscopy etc.

Recovering a signal from its Fourier transform magnitude
is known as phase retrieval. Since squared-magnitude of the
Fourier transform and autocorrelation are Fourier pairs, the
phase retrieval problem can be equivalently posed as recover-
ing a signal from its autocorrelation.

Let x = {x0, x1, ....xn−1} be a discrete-time signal of
length n and sparsity k, where sparsity is defined as the num-
ber of non-zero elements. Its autocorrelation, denoted by
a = {a0, a1, ....an−1}, is defined as

ai
def
=
∑
j

xjxj+i = (x ? x̃)i (1)

where x̃ is the time-reversed version of x. Also, let V andW
denote the support set of the signal x and its autocorrelation
a respectively, defined as

V = {i|xi 6= 0} & W = {i|ai 6= 0} (2)

The phase retrieval problem can be written as

find x

subject to x ? x̃ = a (3)

Connection to integer recovery problem: It is often use-
ful to be able to reconstruct the support set of the signal V
from the support set of the autocorrelation W . In many appli-
cations (e.g, astronomy), the signal’s support set is the desired
information. In other applications, support knowledge makes
signal reconstruction process using available techniques sig-
nificantly easier [9, 10, 11].

We will assume that if ai = 0, then no two elements in x
are separated by a distance i, i.e.,

ai = 0⇒ xjxi+j = 0 ∀ j (4)
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This is a very weak assumption and holds with probability
one if the non-zero entries of the signal are chosen from a
non-degenerate distribution. With this assumption, the sup-
port recovery problem can be posed as

find V

subject to {|i− j| | (i, j) ∈ V } =W (5)

Note that V is a set of integers, and W is exactly its pairwise
distance set.

1.2. Partial Digest Problem

Over the last few years, there has been a lot of interest in
DNA restriction site analysis. A DNA strand is a string on
the letters {A, T,G,C}. Unfortunately, the DNA string can-
not be explicitly observed and in order to map it, biochemical
techniques which provide indirect information have been de-
veloped.

When a particular restriction enzyme is added to a DNA
solution, the DNA is cut at particular restriction sites. For
example, the enzyme EcoRI cuts at locations of the pattern
GAATTC. The goal of restriction site analysis is to determine
the locations of every site for a given enzyme. In order to
do this, a batch of DNA is exposed to a restriction enzyme
in limited quantity so that fragments of all possible lengths
exist (see Figure 1). Using gel electrophoresis, the fragment
lengths can be measured.
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Fig. 1. Partial Digest Problem

Recovering the locations of the restriction sites from the
measured fragment lengths is known as the partial digest
problem. The locations of the restriction sites correspond
to the set of integers V , and the measured fragment lengths
correspond to the set of pairwise distances W .

2. CONTRIBUTIONS

Researchers have proposed a wide range of heuristics [12,
13] to solve the phase retrieval problem, a brief summary of
which can be found in [14]. [15] provides a theoretical frame-
work to understand the heuristics, which are in essence an al-
ternating projection between a convex set and a non-convex
set. The problem with such an approach is that convergence
is often to a local minimum (figure 2), hence chances of suc-
cessful recovery are less. Also, no theoretical guarantees can
be provided.
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Fig. 2. Alternating projection between a convex and a non-
convex set

A variant of the partial digest problem, known as the turn-
pike problem, which is the problem of recovering an integer
set from their pairwise distance multiset (multiplicity infor-
mation of each pairwise distance also available) is also well
studied. The most widely used algorithm to do this recovery
is a worst-case exponential algorithm based on backtracking
[16]. [17] provides a comprehensive summary of the existing
algorithms. The question of unique provable recovery using
polynomial-time algorithms remains unanswered, and com-
plicated mechanisms have been used to solve the problem in
practice [20, 21].

In many applications of these problems, the underlying
signals are naturally sparse. For example, astronomical imag-
ing deals with the locations of the stars in the sky, X-ray crys-
tallography deals with the density of atoms and so on. In
DNA restriction site analysis, it is very reasonable to assume
that the restriction sites are sparsely distributed.

In our work, we attempt to exploit the sparse nature of
the underlying signals. Recently, attempts have been made
to exploit sparsity. An alternating projection based heuristic
was proposed in [18], a semidefinite relaxation based heuris-
tic was explored in [19]. We develop a polynomial-time algo-
rithm which can provably recover the underlying signals with
high probability if the signal is O(n1/2−ε) sparse.

3. MAIN RESULT

Suppose V = {v0, v1, ...., vk−1} is a set of k integers and
W = {w0, w1, ...., wK−1} is its pairwise distance set3.

Theorem 3.1 (Main Result). V can be recovered uniquely
(upto linear shift and reversal) from W in polynomial-time
with probability greater than 1− δ for any δ > 0 if

(i) ∃ n ≥ wK−1 such that V is chosen uniformly at random
from {0, 1, ...., n− 1}

(ii) k = O(n1/2−ε)

(iii) n > n(ε, δ)

3The elements of V and W are assumed to be in ascending order without
loss of generality for convenience of notation, i.e., v0 < v1 < .... < vk−1

and w0 < w1 < .... < wK−1
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In order to overcome the trivial ambiguity of linear shift
and reversal, we attempt to recover the equivalent solution set
U = {u0, u1, ...., uk−1} defined as follows

U =

{
V − v0 if v1 − v0 ≤ vk−1 − vk−2
vk−1 − V otherwise

(6)

i.e., the equivalent solution set U we attempt to recover
has the following properties:

(i) u0 = 0

(ii) u1 − u0 < uk−1 − uk−2

4. ALGORITHM

Let uij = |ui−uj | for 0 ≤ i, j ≤ k− 1. With this definition,
W = {uij : 0 ≤ i, j ≤ k − 1} and U = {u0j : 0 ≤ j ≤
k − 1}. Note that U ⊆W .

4.1. Intersection Step

The key idea of this step can be summarized as follows: sup-
pose we know the value of u0p for some 1 ≤ p ≤ k− 1, if Up
and Wp are defined as

Up = {u0j : p ≤ j ≤ k − 1} & Wp =W + u0p (7)

then Up ⊆ W ∩Wp. The idea can be extended to multiple
intersections. Suppose we know {u0p : 1 ≤ p ≤ t}, we can
construct {Wp : 1 ≤ p ≤ t} and have

Ut ⊆

(
t⋂

p=0

Wp

)
(8)

4.2. Graph Step

For an integer set U whose pairwise distance set is W , con-
sider the set Z = {z0, z1, ....z|Z|−1} such that U ⊆ Z ⊆ W .
Construct a graph G(Z) with |Z| vertices such that there ex-
ists an edge between zi and zj iff the following two conditions
are satisfied

(i) ∀zg, zh ∈ Z, zg−zh 6= zi−zj unless (i, j) = (g, h)

(ii) zi − zj ∈W

i.e., there exists an edge between two vertices if their corre-
sponding pairwise distance is unique and belongs to W . For
example, consider the integer set U = {0, 10, 15, 50} whose
pairwise distance set is W = {0, 5, 10, 15, 35, 40, 50}. Con-
sider the set Z = {0, 10, 15, 35, 40, 50}. The graph G(Z)
looks as shown in Figure 3. Note that there exists an edge
between 10 and 40 as it is the only pair of integers with dif-
ference 10, there doesn’t exist an edge between 0 and 40 as
there is another pair {10, 50} with difference 40 and so on.

0

10

15

35

40

50

Fig. 3. The graphG(Z) for Z = {0, 10, 15, 35, 40, 50}, given
W = {0, 5, 10, 15, 35, 40, 50}

The main idea of this step is as follows: suppose we draw
a graph G(Z) where U ⊆ Z ⊆ W . If there exists an edge
between a pair of integers {zi, zj} ∈ Z such that zi−zj ∈W ,
then {zi, zj} ∈ U . This holds because if {zi, zj} /∈ U , then
since zi−zj ∈W there has to be a pair of integers in U which
have a pairwise distance zi − zj , which would contradict the
fact that an edge exists between zi and zj .

Algorithm 1 Integer Recovery Algorithm
Input: Pairwise distance set W
Output: Integer set U which realizes W

1. Infer u01 from W

2. Construct the set W1 =W + u01

If k = O(n1/4−ε)

3. Calculate U1 =W ∩W1

4. Recover U = {0} ∪ U1

Else if k = O(n1/2−ε)

5. Construct the graph G({0}∪ (W ∩W1)) and infer {u0ip :
1 ≤ p ≤ t = log(k)}

6. Construct the set Wip =W + u0ip for 1 ≤ p ≤ t

7. Calculate Uit =W ∩
(⋂t

p=1Wip

)
8. Define Ũ = {ũ0, ...ũk−1} as Ũ = uk−1 − U and infer
{ũ0p: 1 ≤ p ≤ t} from Uit

9. Construct the set W̃p =W + ũ0p for 1 ≤ p ≤ t = log(k)

10. Calculate Ũt =
(⋂t

p=0 W̃p

)
11. Recover Ũ = {ũ0p : 0 ≤ p ≤ t− 1} ∪ Ũt

12. Recover U = ũk−1 − Ũ
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5. PROOF OF MAIN THEOREM

In this section, we provide the lemmas necessary to prove the
main theorem. Detailed proofs of the lemmas can be found
in [22]. Note that the set V of size k is chosen from the set
{0, 1, ...n− 1} uniformly at random.

Lemma 5.1. u01 can be inferred from W .

Lemma 5.2. Probability that an integer l belongs to W is

(i) 1 if l ∈ U .

(ii) less than or equal to k2

n + o(k
2

n ) if l /∈ U .

Lemma 5.3. The probability that an integer l not in U be-
longs to W ∩W1 is less than or equal to k4

n2 + o( k
4

n2 )

Lemma 5.4 (Intersection Step). The probability that an in-
teger l in W and not in U belongs to W ∩ W1 is less than
k2

n + o(k
2

n ).

Corollary 5.1. U1 = W ∩W1 with probability greater than
1− δ for any δ > 0 if n > n(ε, δ) and k = O(n1/4−ε).

Lemma 5.5 (Graph Step). In the graph G({0}∪ (W ∩W1)),
integers {u0p : 1 ≤ p ≤ t = log(k)} have an edge with
u0,k−1 with probability greater than 1− δ for any δ > 0 if

(i) k = O(n1/2−ε)

(ii) n > n(ε, δ)

Lemma 5.6. The probability that an integer l ∈ W, l /∈ U

belongs to
(⋂t

p=1Wp

)
for t = log(k) is less than or equal

to (k
2(1+ε)

n )
√
t/2 + o(k

2(1+ε)

n )
√
t/2 for n > n(ε, δ).

Lemma 5.7. Ut =
(⋂t

p=0Wp

)
with probability greater than

1− δ for any δ > 0 if

(i) k = O(n1/2−ε)

(ii) t ≥ log(k), n > n(ε, δ)

6. NUMERICAL SIMULATIONS

In order to demonstrate the performance of the proposed al-
gorithm, numerical simulations were performed for differ-
ent values of signal length n and sparsities k. Simulations
were performed by choosing k-element subsets V uniformly
at random from {0, 1, ...., n− 1} for different values of n and
k. Figure 4 plots the probability of successful recovery for
n = 512 and n = 1024.
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Fig. 4. Probability of successful recovery

In order to understand the various steps in the algorithm,
we provide the working details for a particular example:

W = {0, 2, 3, 5, 8, 12, 14, 17, 30, 33, 37, 38, 49, 51,

52, 54, 57, 60, 68, 71, 76, 89, 90, 94, 97, 101,

103, 106, 108, 109, 111, 114, 127, 128, 139,

141, 144, 165, 177, 179, 182}

We can infer u01 = 182 − 179 = 3 from W . Construct
W1 =W + u01 and calculate W ∩W1.

W ∩W1 = {3, 5, 8, 17, 33, 52, 54, 57, 60, 71,

97, 106, 109, 111, 114, 144, 182}

Construct G({0} ∪ (W ∩W1)) to see that

{182} ↔ {5, 17}

from which we can infer u02 = 5 and u03 = 17. Con-
struct W2 = W + u02 and W3 = W + u03 and calculate(⋂3

p=0Wp

)
(

3⋂
p=0

Wp

)
= {54, 106, 111, 114, 144, 182}

Calculate U = {u0p : 0 ≤ p ≤ 3}
⋃(⋂3

p=0Wp

)
U = {0, 3, 5, 17, 54, 106, 111, 114, 144, 182}

which is the required integer set.
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