
A FURTHER IMPROVEMENT OF A FAST DAMPED GAUSS–NEWTON ALGORITHM FOR
CANDECOMP-PARAFAC TENSOR DECOMPOSITION

Petr Tichavský1, Anh Huy Phan2, and Andrzej Cichocki2

1Institute of Information Theory and Automation,
P.O.Box 18, 182 08 Prague 8, Czech Republic

2Brain Science Institute, RIKEN, Wakoshi, Japan. E-mail: phan@brain.riken.jp.

ABSTRACT

In this paper, a novel implementation of the damped Gauss-
Newton algorithm (also known as Levenberg-Marquart) for
the CANDECOMP-PARAFAC (CP) tensor decomposition is
proposed. The method is based on a fast inversion of the ap-
proximate Hessian for the problem. It is shown that the in-
version can be computed on O(NR6) operations, where N
and R is the tensor order and rank, respectively. It is less than
in the best existing state-of-the art algorithm with O(N3R6)
operations. The damped Gauss-Newton algorithm is suitable
namely for difficult scenarios, where nearly-colinear factors
appear in several modes simultaneously. Performance of the
method is shown on decomposition of large tensors (100 ×
100× 100 and 100× 100× 100× 100) of rank 5 to 90.

Index Terms— Multilinear models; canonical polyadic de-
composition; damped Gauss-Newton algorithm

1. INTRODUCTION

Tensor decomposition has recently received increased atten-
tion with the interest in chemistry [1, 2, 3], astronomy, telecom-
munication [4, 5], neural sciences [6, 7], data mining [8, 9],
separated representations involved in quantum mechanics [10],
classification, clustering [11], and compression [12]. Canoni-
cal decomposition or Parallel factor analysis (CANDECOMP
/ PARAFAC or CP), is a widely used tensor factorization in
all these applications, cf. [13, 14].

Among existing algorithms for CP decomposition (CPD),
the damped Gauss-Newton algorithms [15, 16, 17, 18], also
known as the Levenberg-Marquardt algorithm has been shown
to be highly efficient in treatment of difficult decompositions
such as tensor with nearly-collinear factors in several modes,
or large difference in magnitude between components [18,
19, 20, 21]. Unfortunately, the standard LM algorithms for
CPD [15, 16] are computationally demanding due to com-
putation of the large-scale Jacobian, gradients and inversion
of the large-scale approximate Hessian which normally costs

0The work of Petr Tichavský was supported by the Czech Science Foun-
dation through the project 102/09/1278.

O(R3T 3) where T and R are perimeter and rank of the ten-
sor. Explicit expressions for submatrices of the Hessian were
then derived by Paatero [20] and Tomasi [3], which allowed to
bypass construction of the Jacobian. In order to reduce com-
plexity of inverse of H, Paatero [20] employed the Cholesky
decomposition of the approximate Hessian and back substitu-
tion. Tomasi [22] suggested using QR decomposition. How-
ever, the LM algorithms were still computationally demand-
ing. Tichavský and Koldovský [23] proposed a method to
invert the approximate Hessian based on 3R2 × 3R2 dimen-
sional matrices for 3-way tensor. Recently, the fast LM (fLM)
algorithm for CPD has been proposed in [18]. Complexity of
each iteration of the fLM algorithm is O(N3R6) where N
is the tensor order. In this paper we propose a further im-
provement to reduce the complexity per iteration of the fLM
algorithm to O(NR6) operations.

2. PROBLEM FORMULATION

Let Y be an N− way tensor of dimension I1× I2× . . .× IN .
The tensor is said to be of rank R, if R is the smallest number
of rank-one tensors which admits the decomposition of Y of
the form

Y =
R∑

r=1

a(1)r ◦ a(2)r ◦ . . . ◦ a(N)
r (1)

where ◦ denotes the outer vector product, a(n)r , r = 1, . . . , R,
n = 1, . . . , N are vectors of the length In called factors. The
tensor in (1) can be characterized by N factor matrices An =

[a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R] of the size In × R for n = 1, . . . , N .

The model (1) is also referred to as a Kruskal form of a tensor
[13].

Let a vector parameter θ containing all parameters of our
model be arranged as

θ = [(vecA1)
T , . . . , (vecAN)T]T (2)

The maximum likelihood solution for θ consists in minimiz-
ing the least squares criterion

Q(θ) = ∥Ŷ− Y(θ)∥2F (3)

5964978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

where Ŷ is a noisy observation of the tensor (with i.i.d Gaus-
sian noise), and ∥ · ∥F stands for the Frobenius norm.

The damped Gauss-Newton algorithm, sometimes called
the Levenberg-Marquardt algorithm, uses updates of the esti-
mated parameter in the form

θ ← θ + (H+ µIT)
−1JT vec(Ŷ− Y(θ)) (4)

where H = H(θ) = JT (θ)J(θ) is the approximate Hessian,
J = J(θ) is the Jacobian (matrix of the first-order derivatives)
of vec[Y(θ)] with respect to θ, IT is the identity matrix of
the size T × T , T = dim(θ) = R

∑
n In, and µ > 0 is a

regularization parameter.
A popular update rule for the regularization parameter

was proposed in [25]. In the CP decomposition algorithms,
the term g = JTvec(Ŷ − Y(θ)) is sometimes called CP
gradient or MTTKRP (Matricized Tensor Times Khatri-Rao
Product) [24]. It appears in all of the known algorithms. A
fast method of computing the CP gradient was proposed in
[26].

3. PROBLEM SOLUTION

Let Γnm be defined as a Hadamard (elementwise) product of
matrices Ck = AT

kAk, k ∈ {1, . . . , N} − {n,m}, that is

Γnm = ~
k ̸=n,m

Ck , Ck = AT
kAk . (5)

Theorem 1 [18]: The Hessian H can be decomposed into low
rank matrices under the form as

H = G+ ZKZT (6)

where K = [Knm]
N
n,m=1 contains submatrices Knm given

by
Knm = (1− δnm)PR dvec (Γnm) (7)

PR is the permutation matrix of dimension R2 × R2 defined
in [18] such that vec(M) = PR vec (MT) for any R × R
matrix M, δnm is the Kronecker delta, and dvec(M) is a
short-hand notation for diag(vec(M)), i.e. a diagonal matrix
containing all elements of a matrix M on its main diagonal.
Next,

G = bdiag (Γnn ⊗ IIn)
N
n=1 (8)

and
Z = bdiag (IR ⊗An)

N
n=1 (9)

where ⊗ denotes the Kronecker product, IIn is an identity
matrix of the size In × In, and bdiag(·) is a block diago-
nal matrix with the given blocks on its diagonal. Note that
the Hessian H in (6) is rank deficient because of the scale
ambiguity of columns of factor matrices [20, 17]. It has the
dimension T × T , T = R

∑
n In, but its rank is at most

T − (N − 1)R.

Theorem 1 allows to inverse the large Hessian via employ-
ing a much smaller matrix by using the binomial inverse theo-
rem (32). In particular, we wish to invert “diagonally loaded”
Hessian Hµ = H+ µIT ,

H−1
µ =

(
Gµ + ZKZT

)−1

= G−1
µ −G−1

µ ZB−1
µ ZTG−1

µ (10)

where

Gµ = G+ µ IT

= bdiag ((Γnn + µ IR)⊗ IIn)
N
n=1 (11)

Gµ
−1 = bdiag

(
(Γnn + µ IR)

−1 ⊗ IIn

)N

n=1
(12)

Bµ = K−1 + ZTG−1
µ Z . (13)

We can see that inversion of the Hessian can be done through
an inversion of the matrix Bµ, which has the size NR2 ×
NR2. Complexity of the inversion is O(N3R6). We show,
however, that the matrix can be inverted in O(NR6) opera-
tions.

The fast inversion of Bµ is based on the observation that

K = K0 +DFDT (14)
K0 = bdiag(Kn)

N
n=1 (15)

Kn = −PR dvec(Γnn ⊘Cn) (16)

D =

 D1

...
DN

 , Dn = dvec(1⊘Cn) (17)

F = PR dvec(Γ), Γ =
N~

n=1
Cn (18)

where ⊘ denotes the elementwise division. Then

Bµ = K−1 + ZTG−1
µ Z

= (K0 +DFDT)−1 + ZTG−1
µ Z

= K−1
0 −K−1

0 D(F−1 +DTK−1
0 D)−1DTK−1

0

+ZTG−1
µ Z

= K−1
0 + ZTG−1

µ Z−K−1
0 DQ−1DTK−1

0

= Jµ −K−1
0 DQ−1DTK−1

0 (19)

where

Q = F−1 +DTK−1
0 D (20)

Jµ = K−1
0 + ZTG−1Z = bdiag(Jn)

N
n=1 (21)

Jn = K−1
n + (IR ⊗An)

T ·
· ((Γnn + µIR)

−1 ⊗ IIn)(IR ⊗An)

= −PR dvec(Cn ⊘ Γnn)

+(Γnn + µIR)
−1 ⊗Cn . (22)

5965

Note that Q can be simplified to

Q = F−1 +
N∑

n=1

DnK
−1
n Dn

= PR dvec(1⊘ Γ)−
N∑

n=1

PR dvec(1⊘ (Γnn ~Cn))

= −(N − 1)PR dvec(1⊘ Γ) . (23)

Now, applying (32) to (19) we get

B−1
µ = J−1

µ + J−1
µ K−1

0 DS−1
µ DTK−1

0 J−1
µ

= J−1
µ + LµS

−1
µ LT

µ (24)

where

Sµ = Q−DTK−1
0 J−1

µ K−1
0 D

= Q−
N∑

n=1

DnK
−1
n J−1

n K−1
n Dn (25)

and

Lµ = J−1
µ K−1

0 D . (26)

We can see that the inverse of Bµ, which normally needs
O(N3R6) operations, can be computed through inversions of
smaller matrices J1, . . . ,JN and Sµ of the size R2 × R2 in
O(NR6) operations.

The inverse of Hµ can be written also in a block form as

(Hµ)
−1 = H̃µ =

H̃

(1,1)
µ · · · H̃

(1,N)
µ

...
. . .

...
H̃

(N,1)
µ · · · H̃

(N,N)
µ

 (27)

where

H̃(n,m)
µ = δn,m

(
Γ̃
(n,n)

µ ⊗ IIn

)
+
(
IR ⊗A(n)

)
B̃(n,m)

µ

(
IR ⊗A(m)T

)
(28)

Γ̃
(n,n)

µ = (Γnn + µIR)
−1 (29)

and B̃
(n,m)
µ is the (n,m)−th block of B−1

µ , in particular

B̃(n,m)
µ = δn,mJ−1

n + LnS
−1
µ Lm (30)

Ln = J−1
n K−1

n Dn

= −J−1
n PR dvec(1⊘ Γnn) (31)

for m,n = 1, . . . , N . Note that the inversion of Hµ in the
block form is in memory saving format. It requires only sav-

ing the matrices Γ̃
(n,n)

µ , Γnn, J−1
n , n = 1, . . . , N , and S−1

µ .

Remark. Unlike the fast inversion of the Hessian through
(10) with direct inversion of Bµ, the novel fast inversion through

(24) or (27)-(31) requires the assumption that no element of
the matrices Γnn is zero. It means that the latter method is
numerically less stable than the former method, when the fac-
tor matrices have orthogonal or nearly orthogonal columns.
In that case, the nearly zero elements of Γnn have to be re-
placed by a suitable small constant. If the Hessian remains
positive definite, the convergence of the whole dGN method
is not affected at all or is affected only a little. In other words,
the convergence can be a little slower, but it is guaranteed,
to the same terminating point with zero gradient. Note that
for tensors coming from the real-world it is rare to get factors
with nearly orthogonal columns. A more problematic case
(and also more frequent) is to have nearly co-linear columns.

4. EXAMPLES

The Levenberg-Marquart algorithm has been proved to out-
perform existing other CP algorithms [17, 18], and to be par-
ticularly efficient in some difficult CP decompositions such
as decomposition of tensors with (nearly) linear dependency
among components of factor matrices, or large difference in
magnitude between components [20, 17, 18]. Hence, in this
section, we only compare execution times of the fLM algo-
rithms including the standard dGN algorithm in the Matlab
routines PARAFAC3W [17, 21], the fLM algorithm in [18]
and the new fLM algorithm. The standard dGN algorithm
in PARAFAC3W [21] employs Cholesky decomposition and
back substitution to solve the inverse problems H−1g, where
g is the CP gradient (MTTKRP). Since PARAFAC3W sup-
ports only order-3 tensors, the dGN algorithm does not par-
ticipate in simulations for higher order tensors. The compu-
tational costs to inverse the approximate Hessian H of the
new fLM, fLM[18] and dGN[17] are O(NR6), O(N3R6)
and O(R3T 3), respectively.

We generated order-3 and order-4 dense random tensors
of size In = 100 for all n, whose entries are normally dis-
tributed random numbers. The random tensors were decom-
posed into R rank-one tensors with R = 5, 10 , 20, . . . , 90.
Algorithms factorized the same data tensors using the same
initialization values. There was not any stopping criterion ap-
plied to the three algorithms, except the maximum number of
iterations was 100 for low R, and 20 for high R ≥ 60. Exe-
cution time for each algorithm was measured using the stop-
watch command: “tic” “toc” of MATLAB release 2011a on a
laptop which had 1.8 GHz i7 processor and 4 GB memory.

Fig. 2 shows the average execution times per iteration of
the three LM algorithms. The fLM and new fLM algorithms
are significantly faster than dGN. For example, dGN took 78
seconds/iteration on average to factorize a 100×100×100 di-
mensional tensor with R = 40, while fLM[18] took 7 sec-
onds/iteration, and new fLM need only 3.1 seconds/iteration.
It means that for this test case, the new fLM was approxi-
mately 2.3 and 25 times faster than fLM[18] and dGN[17],
respectively. The speed-up ratios between dGN and new fLM

5966

10 20 30 40 50 60 70 80 90

10
−1

10
0

10
1

10
2

10
3

R

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

dGN [21]
fLM [18]
fLM new

(a)

10 20 30 40 50 60 70 80 90
1MB

10MB

100MB

1GB
2GB
4GB
8GB

15GB

R

A
lll

oc
at

ed
 m

em
or

y
(M

B
)

dGN [21]
fLM [18]
fLM new

(b)

0 20 40 60 80 100

1

2

3
4
5

10

20

30
40
50
60

R

S
pe

ed
−

up
 r

at
io

 (
tim

es
)

dGN [21] / fLM new
fLM [18] / fLM new

(c)

Fig. 1. Comparison of memory requirements and execution time per iteration of fLM algorithms and their speed-up ratio in
approximation of 100×100 × 100 dimensional tensors by rank-R tensors where R = 5, 10, 20, . . . , 90.

were approximately 19.4, 51.9, 64.3, 28.4, 25.1, 16.5, 8.3,
5.8, 5 and 2.6 times for R = 5, 10, 20, . . . , 90, respectively as
seen in Fig. 1(c). The ratio was relatively high (> 30 times)
for low ranks R ≤ 30, and gradually reduced to 2 times when
R increased and approached In = 100. Nevertheless, the
new fLM algorithm saved at least 12 minutes for each itera-
tion compared with the dGN algorithm when R = 90.

In addition to having low computational cost, the new
fLM algorithm was also considerably less memory consum-
ing than the dGN algorithm[21]. The amounts of allocated
memory per iteration of the three fLM algorithms are com-
pared in Fig. 1(b). It would be important to note that the ma-
chine had only 4 GB RAM, and the algorithm cannot use the
whole memory. The standard dGN algorithm was extremely
space consuming. When R ≥ 50, this algorithm exceeded the
memory limit; hence it became relatively slow. The new fLM
algorithm required much less RAM than dGN.

Comparison between fLM and new fLM in decomposition
of order-4 tensors of size In = 100 is illustrated in Fig. 2. The
new fLM algorithm was approximately 6 times faster than
fLM[18] when the two algorithms decomposed the tensors
into R = 60 rank-one tensors.

5. CONCLUSIONS

We have derived explicit forms of inversion of the Hessian
matrix of the multilinear mapping that describes the CP fac-
torization, suitable for application in the fast damped Gauss-
Newton method. The inversion is both fast and memory sav-
ing. In future we wish to extend the method to some new
emerging models such as Kronecker product tensor decom-
position and block tensor decomposition.

Appendix A: Matrix Inversion Lemma
Let A, X, Y, and R are matrices of compatible dimensions
such that the following products and inverses exist.

10 20 30 40 50 60 70 80

10
0

10
1

10
2

R

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

fLM [18]
fLM new

(a)

10 20 30 40 50 60 70 80
1MB

10MB

100MB

1GB
2GB
4GB
8GB

15GB

R

A
lll

oc
at

ed
 m

em
or

y
(M

B
)

fLM [18]
fLM new

(b)

Fig. 2. Comparison of execution time per iteration and
of memory requirements of the fLM algorithms and their
speed-up ratio in approximation of 100×100 × 100×
100 dimensional tensors by rank-R tensors where R =
5, 10, 20, . . . , 80.

Then

(A+XRY)−1 = A−1 −A−1X(R−1 +YA−1X)−1YA−1

(32)

5967

6. REFERENCES

[1] C.M. Andersson and R. Bro, “Practical aspects
of PARAFAC modelling of fluorescence excitation-
emission data,” Journal of Chemometrics, vol. 17, pp.
200–215, 2003.

[2] R. Bro, Multi-way Analysis in the Food Industry - Mod-
els, Algorithms, and Applications, Ph.D. thesis, Univer-
sity of Amsterdam, Holland, 1998.

[3] G. Tomasi, Practical and Computational Aspects in
Chemometric Data Analysis, Ph.D. thesis, Frederiks-
berg, Denmark, 2006.

[4] L. De Lathauwer and J. Castaing, “Tensor-based tech-
niques for the blind separation of DS-CDMA signals,”
Signal Processing, vol. 87, no. 2, pp. 322–336, feb 2007.

[5] N.D. Sidiropoulos and R. Bro, “PARAFAC techniques
for signal separation,” in Signal Processing Advances in
Communications, P. Stoica, G. Giannakis, Y. Hua, and
L. Tong, Eds., vol. 2, chapter 4. Prentice-Hall, Upper
Saddle River, NJ, USA, 2000.

[6] M. Mørup, L. K. Hansen, C. S. Herrmann, J. Parnas,
and S. M. Arnfred, “Parallel factor analysis as an
exploratory tool for wavelet transformed event-related
EEG,” NeuroImage, vol. 29, no. 3, pp. 938–947, 2006.

[7] H. Becker, P. Comon, L. Albera, M. Haardt, and I. Mer-
let, “Multi-way space-time-wave-vector analysis for
EEG source separation,” Signal Processing, vol. 92, no.
4, pp. 1021–1031, 2012.

[8] B. W. Bader, M. W. Berry, and M. Browne, “Discussion
tracking in Enron email using PARAFAC,” in Survey of
Text Mining II, M. W. Berry and M. Castellanos, Eds.,
pp. 147–163. Springer London, 2008.

[9] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal
link prediction using matrix and tensor factorizations,”
ACM Transactions on Knowledge Discovery from Data,
vol. 5, no. 2, pp. Article 10, 27 pages, February 2011.

[10] D. González, A. Ammar, F. Chinesta, and E. Cueto,
“Recent advances on the use of separated representa-
tions,” International Journal for Numerical Methods in
Engineering, vol. 81, no. 5, pp. 637–659, 2010.

[11] A. Shashua and T. Hazan, “Non-negative tensor factor-
ization with applications to statistics and computer vi-
sion,” in Proc. of the 22-th International Conference on
Machine Learning (ICML), Bonn, Germany, 2005, pp.
792–799, ICML.

[12] I. Ibraghimov, “Application of the three-way decompo-
sition for matrix compression,” Numerical Linear Al-
gebra with Applications, vol. 9, no. 6-7, pp. 551–565,
2002.

[13] T.G. Kolda and B.W. Bader, “Tensor decompositions
and applications,” SIAM Review, vol. 51, no. 3, pp. 455–
500, September 2009.

[14] A. Cichocki, R. Zdunek, A.H. Phan and S.I. Amari,
Nonnegative Matrix and Tensor Factorizations: Appli-
cations to Exploratory Multi-way Data Analysis and
Blind Source Separation, Wiley, 2009.

[15] C. Hayashi and F. Hayashi, “A new algorithm to solve
PARAFAC-model,” Behaviormetrika, vol. 11, pp. 49–
60, 1982.

[16] P. Paatero, “Least-squares formulation of robust non-
negative factor analysis,” Chemometrics and Intelligent
Laboratory Systems, vol. 37, pp. 23–35, 1997.

[17] G. Tomasi and R. Bro, “A comparison of algorithms for
fitting the PARAFAC model”, Computational Statistics
and Data Analysis, vol. 50, pp. 1700-1734, 2006.

[18] A.-H. Phan, P. Tichavský, and A. Cichocki, “Low com-
plexity damped Gauss-Newton algorithms for CAN-
DECOMP /PARAFAC,” http://arxiv.org/abs/1205.2584,
SIAM Journal on Linear algebra and Application, ac-
cepted for publication.

[19] B. C. Mitchell and D. S. Burdick, “Slowly converging
PARAFAC sequences: Swamps and two-factor degen-
eracies,” Journal of Chemometrics, vol. 8, pp. 155168,
1994.

[20] P. Paatero, “A weighted non-negative least squares al-
gorithm for three-way ’PARAFAC’ factor analysis”,
Chemometrics and Intelligent Laboratory Systems, vol.
38, pp. 223–242, 1997.

[21] G. Tomasi, INDAFAC and PARAFAC3W.
http://www.models.kvl/dk/source/
indafac/index.asp, 2003.

[22] G. Tomasi, “Recent developments in fast algorithms for
fitting the PARAFAC model,” Greece, 2006, TRICAP.

[23] P. Tichavský, Z. Koldovský, “Simultaneous search for
all modes in multilinear models”, Proc. ICASSP 2010,
Dallas, TX, March 14-19, 2010, pp. 4114-4117.

[24] C. A. Anderson and R. Bro, “The n-way toolbox for
MATLAB”, Chemometrics and Intelligent Laboratory
Systems, vol. 52, pp. 1-4, 2000.

[25] K. Madsen, H. B. Nielsen, O. Tingleff, “Methods for
nonlinear least squares problems, second ed.”, Depart-
ment of Mathematical Modelling, Technical University
of Denmark, Lyngby, Denmark, 2004.

[26] A.-H. Phan, P. Tichavský, and A. Cichocki,
“On fast computation of gradients for CAN-
DECOMP/PARAFAC algorithms,” CoRR, vol.
abs/1204.1586, 2012, submitted for publication.

5968

