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ABSTRACT

In this paper, a novel implementation of the damped Gauss-
Newton algorithm (also known as Levenberg-Marquart) for
the CANDECOMP-PARAFAC (CP) tensor decomposition is
proposed. The method is based on a fast inversion of the ap-
proximate Hessian for the problem. It is shown that the in-
version can be computed on O(NR6) operations, where N
and R is the tensor order and rank, respectively. It is less than
in the best existing state-of-the art algorithm with O(N3R6)
operations. The damped Gauss-Newton algorithm is suitable
namely for difficult scenarios, where nearly-colinear factors
appear in several modes simultaneously. Performance of the
method is shown on decomposition of large tensors (100 ×
100× 100 and 100× 100× 100× 100) of rank 5 to 90.

Index Terms— Multilinear models; canonical polyadic de-
composition; damped Gauss-Newton algorithm

1. INTRODUCTION

Tensor decomposition has recently received increased atten-
tion with the interest in chemistry [1, 2, 3], astronomy, telecom-
munication [4, 5], neural sciences [6, 7], data mining [8, 9],
separated representations involved in quantum mechanics [10],
classification, clustering [11], and compression [12]. Canoni-
cal decomposition or Parallel factor analysis (CANDECOMP
/ PARAFAC or CP), is a widely used tensor factorization in
all these applications, cf. [13, 14].

Among existing algorithms for CP decomposition (CPD),
the damped Gauss-Newton algorithms [15, 16, 17, 18], also
known as the Levenberg-Marquardt algorithm has been shown
to be highly efficient in treatment of difficult decompositions
such as tensor with nearly-collinear factors in several modes,
or large difference in magnitude between components [18,
19, 20, 21]. Unfortunately, the standard LM algorithms for
CPD [15, 16] are computationally demanding due to com-
putation of the large-scale Jacobian, gradients and inversion
of the large-scale approximate Hessian which normally costs
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O(R3T 3) where T and R are perimeter and rank of the ten-
sor. Explicit expressions for submatrices of the Hessian were
then derived by Paatero [20] and Tomasi [3], which allowed to
bypass construction of the Jacobian. In order to reduce com-
plexity of inverse of H, Paatero [20] employed the Cholesky
decomposition of the approximate Hessian and back substitu-
tion. Tomasi [22] suggested using QR decomposition. How-
ever, the LM algorithms were still computationally demand-
ing. Tichavský and Koldovský [23] proposed a method to
invert the approximate Hessian based on 3R2 × 3R2 dimen-
sional matrices for 3-way tensor. Recently, the fast LM (fLM)
algorithm for CPD has been proposed in [18]. Complexity of
each iteration of the fLM algorithm is O(N3R6) where N
is the tensor order. In this paper we propose a further im-
provement to reduce the complexity per iteration of the fLM
algorithm to O(NR6) operations.

2. PROBLEM FORMULATION

Let Y be an N− way tensor of dimension I1× I2× . . .× IN .
The tensor is said to be of rank R, if R is the smallest number
of rank-one tensors which admits the decomposition of Y of
the form

Y =
R∑

r=1

a(1)r ◦ a(2)r ◦ . . . ◦ a(N)
r (1)

where ◦ denotes the outer vector product, a(n)r , r = 1, . . . , R,
n = 1, . . . , N are vectors of the length In called factors. The
tensor in (1) can be characterized by N factor matrices An =

[a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R ] of the size In × R for n = 1, . . . , N .

The model (1) is also referred to as a Kruskal form of a tensor
[13].

Let a vector parameter θ containing all parameters of our
model be arranged as

θ = [(vecA1)
T , . . . , (vecAN )T ]T (2)

The maximum likelihood solution for θ consists in minimiz-
ing the least squares criterion

Q(θ) = ∥Ŷ− Y(θ)∥2F (3)
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where Ŷ is a noisy observation of the tensor (with i.i.d Gaus-
sian noise), and ∥ · ∥F stands for the Frobenius norm.

The damped Gauss-Newton algorithm, sometimes called
the Levenberg-Marquardt algorithm, uses updates of the esti-
mated parameter in the form

θ ← θ + (H+ µIT )
−1JT vec(Ŷ− Y(θ)) (4)

where H = H(θ) = JT (θ)J(θ) is the approximate Hessian,
J = J(θ) is the Jacobian (matrix of the first-order derivatives)
of vec[Y(θ)] with respect to θ, IT is the identity matrix of
the size T × T , T = dim(θ) = R

∑
n In, and µ > 0 is a

regularization parameter.
A popular update rule for the regularization parameter

was proposed in [25]. In the CP decomposition algorithms,
the term g = JTvec(Ŷ − Y(θ)) is sometimes called CP
gradient or MTTKRP (Matricized Tensor Times Khatri-Rao
Product) [24]. It appears in all of the known algorithms. A
fast method of computing the CP gradient was proposed in
[26].

3. PROBLEM SOLUTION

Let Γnm be defined as a Hadamard (elementwise) product of
matrices Ck = AT

kAk, k ∈ {1, . . . , N} − {n,m}, that is

Γnm = ~
k ̸=n,m

Ck , Ck = AT
kAk . (5)

Theorem 1 [18]: The Hessian H can be decomposed into low
rank matrices under the form as

H = G+ ZKZT (6)

where K = [Knm]
N
n,m=1 contains submatrices Knm given

by
Knm = (1− δnm)PR dvec (Γnm) (7)

PR is the permutation matrix of dimension R2 × R2 defined
in [18] such that vec(M) = PR vec (MT ) for any R × R
matrix M, δnm is the Kronecker delta, and dvec(M) is a
short-hand notation for diag(vec(M)), i.e. a diagonal matrix
containing all elements of a matrix M on its main diagonal.
Next,

G = bdiag (Γnn ⊗ IIn)
N
n=1 (8)

and
Z = bdiag (IR ⊗An)

N
n=1 (9)

where ⊗ denotes the Kronecker product, IIn is an identity
matrix of the size In × In, and bdiag(·) is a block diago-
nal matrix with the given blocks on its diagonal. Note that
the Hessian H in (6) is rank deficient because of the scale
ambiguity of columns of factor matrices [20, 17]. It has the
dimension T × T , T = R

∑
n In, but its rank is at most

T − (N − 1)R.

Theorem 1 allows to inverse the large Hessian via employ-
ing a much smaller matrix by using the binomial inverse theo-
rem (32). In particular, we wish to invert “diagonally loaded”
Hessian Hµ = H+ µIT ,

H−1
µ =

(
Gµ + ZKZT

)−1

= G−1
µ −G−1

µ ZB−1
µ ZTG−1

µ (10)

where

Gµ = G+ µ IT

= bdiag ((Γnn + µ IR)⊗ IIn)
N
n=1 (11)

Gµ
−1 = bdiag

(
(Γnn + µ IR)

−1 ⊗ IIn

)N

n=1
(12)

Bµ = K−1 + ZTG−1
µ Z . (13)

We can see that inversion of the Hessian can be done through
an inversion of the matrix Bµ, which has the size NR2 ×
NR2. Complexity of the inversion is O(N3R6). We show,
however, that the matrix can be inverted in O(NR6) opera-
tions.

The fast inversion of Bµ is based on the observation that

K = K0 +DFDT (14)
K0 = bdiag(Kn)

N
n=1 (15)

Kn = −PR dvec(Γnn ⊘Cn) (16)

D =

 D1

...
DN

 , Dn = dvec(1⊘Cn) (17)

F = PR dvec(Γ), Γ =
N~

n=1
Cn (18)

where ⊘ denotes the elementwise division. Then

Bµ = K−1 + ZTG−1
µ Z

= (K0 +DFDT )−1 + ZTG−1
µ Z

= K−1
0 −K−1

0 D(F−1 +DTK−1
0 D)−1DTK−1

0

+ZTG−1
µ Z

= K−1
0 + ZTG−1

µ Z−K−1
0 DQ−1DTK−1

0

= Jµ −K−1
0 DQ−1DTK−1

0 (19)

where

Q = F−1 +DTK−1
0 D (20)

Jµ = K−1
0 + ZTG−1Z = bdiag(Jn)

N
n=1 (21)

Jn = K−1
n + (IR ⊗An)

T ·
· ((Γnn + µIR)

−1 ⊗ IIn)(IR ⊗An)

= −PR dvec(Cn ⊘ Γnn)

+(Γnn + µIR)
−1 ⊗Cn . (22)
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Note that Q can be simplified to

Q = F−1 +
N∑

n=1

DnK
−1
n Dn

= PR dvec(1⊘ Γ)−
N∑

n=1

PR dvec(1⊘ (Γnn ~Cn))

= −(N − 1)PR dvec(1⊘ Γ) . (23)

Now, applying (32) to (19) we get

B−1
µ = J−1

µ + J−1
µ K−1

0 DS−1
µ DTK−1

0 J−1
µ

= J−1
µ + LµS

−1
µ LT

µ (24)

where

Sµ = Q−DTK−1
0 J−1

µ K−1
0 D

= Q−
N∑

n=1

DnK
−1
n J−1

n K−1
n Dn (25)

and

Lµ = J−1
µ K−1

0 D . (26)

We can see that the inverse of Bµ, which normally needs
O(N3R6) operations, can be computed through inversions of
smaller matrices J1, . . . ,JN and Sµ of the size R2 × R2 in
O(NR6) operations.

The inverse of Hµ can be written also in a block form as

(Hµ)
−1 = H̃µ =


H̃

(1,1)
µ · · · H̃

(1,N)
µ

...
. . .

...
H̃

(N,1)
µ · · · H̃

(N,N)
µ

 (27)

where

H̃(n,m)
µ = δn,m

(
Γ̃
(n,n)

µ ⊗ IIn

)
+
(
IR ⊗A(n)

)
B̃(n,m)

µ

(
IR ⊗A(m)T

)
(28)

Γ̃
(n,n)

µ = (Γnn + µIR)
−1 (29)

and B̃
(n,m)
µ is the (n,m)−th block of B−1

µ , in particular

B̃(n,m)
µ = δn,mJ−1

n + LnS
−1
µ Lm (30)

Ln = J−1
n K−1

n Dn

= −J−1
n PR dvec(1⊘ Γnn) (31)

for m,n = 1, . . . , N . Note that the inversion of Hµ in the
block form is in memory saving format. It requires only sav-

ing the matrices Γ̃
(n,n)

µ , Γnn, J−1
n , n = 1, . . . , N , and S−1

µ .

Remark. Unlike the fast inversion of the Hessian through
(10) with direct inversion of Bµ, the novel fast inversion through

(24) or (27)-(31) requires the assumption that no element of
the matrices Γnn is zero. It means that the latter method is
numerically less stable than the former method, when the fac-
tor matrices have orthogonal or nearly orthogonal columns.
In that case, the nearly zero elements of Γnn have to be re-
placed by a suitable small constant. If the Hessian remains
positive definite, the convergence of the whole dGN method
is not affected at all or is affected only a little. In other words,
the convergence can be a little slower, but it is guaranteed,
to the same terminating point with zero gradient. Note that
for tensors coming from the real-world it is rare to get factors
with nearly orthogonal columns. A more problematic case
(and also more frequent) is to have nearly co-linear columns.

4. EXAMPLES

The Levenberg-Marquart algorithm has been proved to out-
perform existing other CP algorithms [17, 18], and to be par-
ticularly efficient in some difficult CP decompositions such
as decomposition of tensors with (nearly) linear dependency
among components of factor matrices, or large difference in
magnitude between components [20, 17, 18]. Hence, in this
section, we only compare execution times of the fLM algo-
rithms including the standard dGN algorithm in the Matlab
routines PARAFAC3W [17, 21], the fLM algorithm in [18]
and the new fLM algorithm. The standard dGN algorithm
in PARAFAC3W [21] employs Cholesky decomposition and
back substitution to solve the inverse problems H−1g, where
g is the CP gradient (MTTKRP). Since PARAFAC3W sup-
ports only order-3 tensors, the dGN algorithm does not par-
ticipate in simulations for higher order tensors. The compu-
tational costs to inverse the approximate Hessian H of the
new fLM, fLM[18] and dGN[17] are O(NR6), O(N3R6)
and O(R3T 3), respectively.

We generated order-3 and order-4 dense random tensors
of size In = 100 for all n, whose entries are normally dis-
tributed random numbers. The random tensors were decom-
posed into R rank-one tensors with R = 5, 10 , 20, . . . , 90.
Algorithms factorized the same data tensors using the same
initialization values. There was not any stopping criterion ap-
plied to the three algorithms, except the maximum number of
iterations was 100 for low R, and 20 for high R ≥ 60. Exe-
cution time for each algorithm was measured using the stop-
watch command: “tic” “toc” of MATLAB release 2011a on a
laptop which had 1.8 GHz i7 processor and 4 GB memory.

Fig. 2 shows the average execution times per iteration of
the three LM algorithms. The fLM and new fLM algorithms
are significantly faster than dGN. For example, dGN took 78
seconds/iteration on average to factorize a 100×100×100 di-
mensional tensor with R = 40, while fLM[18] took 7 sec-
onds/iteration, and new fLM need only 3.1 seconds/iteration.
It means that for this test case, the new fLM was approxi-
mately 2.3 and 25 times faster than fLM[18] and dGN[17],
respectively. The speed-up ratios between dGN and new fLM
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Fig. 1. Comparison of memory requirements and execution time per iteration of fLM algorithms and their speed-up ratio in
approximation of 100×100 × 100 dimensional tensors by rank-R tensors where R = 5, 10, 20, . . . , 90.

were approximately 19.4, 51.9, 64.3, 28.4, 25.1, 16.5, 8.3,
5.8, 5 and 2.6 times for R = 5, 10, 20, . . . , 90, respectively as
seen in Fig. 1(c). The ratio was relatively high (> 30 times)
for low ranks R ≤ 30, and gradually reduced to 2 times when
R increased and approached In = 100. Nevertheless, the
new fLM algorithm saved at least 12 minutes for each itera-
tion compared with the dGN algorithm when R = 90.

In addition to having low computational cost, the new
fLM algorithm was also considerably less memory consum-
ing than the dGN algorithm[21]. The amounts of allocated
memory per iteration of the three fLM algorithms are com-
pared in Fig. 1(b). It would be important to note that the ma-
chine had only 4 GB RAM, and the algorithm cannot use the
whole memory. The standard dGN algorithm was extremely
space consuming. When R ≥ 50, this algorithm exceeded the
memory limit; hence it became relatively slow. The new fLM
algorithm required much less RAM than dGN.

Comparison between fLM and new fLM in decomposition
of order-4 tensors of size In = 100 is illustrated in Fig. 2. The
new fLM algorithm was approximately 6 times faster than
fLM[18] when the two algorithms decomposed the tensors
into R = 60 rank-one tensors.

5. CONCLUSIONS

We have derived explicit forms of inversion of the Hessian
matrix of the multilinear mapping that describes the CP fac-
torization, suitable for application in the fast damped Gauss-
Newton method. The inversion is both fast and memory sav-
ing. In future we wish to extend the method to some new
emerging models such as Kronecker product tensor decom-
position and block tensor decomposition.

Appendix A: Matrix Inversion Lemma
Let A, X, Y, and R are matrices of compatible dimensions
such that the following products and inverses exist.
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Fig. 2. Comparison of execution time per iteration and
of memory requirements of the fLM algorithms and their
speed-up ratio in approximation of 100×100 × 100×
100 dimensional tensors by rank-R tensors where R =
5, 10, 20, . . . , 80.

Then

(A+XRY)−1 = A−1 −A−1X(R−1 +YA−1X)−1YA−1

(32)
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