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ABSTRACT

Super-Resolution Image Reconstruction is known to be sen-
sitive to errors in assumptions such as accurate sub-pixel
motion estimation. Even small errors can yield a significant
degradation of image quality that complicates any follow-on
task such as object detection or classification. We focus on the
problem of automatic quality assessment of Super-Resolution
image reconstruction. We propose a bootstrap-based method
that provides an objective metric quantifying reconstruction
quality and thus allowing to readjust the reconstruction.

1. INTRODUCTION

Super-Resolution Image Reconstruction (SRIR) techniques
[1] allow us to obtain a high-resolution (HR) image from a
set of spatially displaced low-resolution (LR) images. SRIR
is thus of high importance in areas where sensing a set of
images with reduced resolution is more practical, cheaper,
less dangerous or faster than acquiring a single image of high
resolution. In a nutshell, SRIR replaces expensive sensing
hardware by computational power. This is of interest in ap-
plications such as remote sensing, surveillance and medical
imaging where it has successfully been applied in the past.

In order to successfully ’fuse’ and interpolate the set of
LR images to a single HR image, estimates of the projec-
tions from the HR image to each of the LR images are cru-
cial. Depending on the practical scenario, these projections
include, among others, motion, blurring, warping, lighting
changes and zooming. Further, noise models are necessary
to e.g. perform maximum likelihood (ML) or maximum a
posteriori (MAP) estimation [1, 2, 3]. It is noted that some
estimates have a higher impact on the success of SRIR than
others. High-precision subpixel motion estimation for exam-
ple is crucial to correctly align the set of LR images. Even
small errors in the motion estimate can show dramatic effects
on the resulting HR image. Errors in estimating the lighting
change on the other hand will generally not show significant
impact on the image quality.

For a practical SRIR system, automatic reconstruction is
a key issue. That is, given a set of LR images, the correspond-
ing projections are to be estimated from the data at hand,
followed by the actual image reconstruction step. Automatic
quality assessment of the image reconstruction is then of cru-
cial importance. Assigning quality information to image re-
construction results can be of practical help to e.g.

• re-estimate the projection matrices using more ad-
vanced methods (for example flow-based instead of
simple block-based motion estimation)

• use Super-Resolution techniques only for those image
parts where, due to sufficient simplicity of the projec-
tion matrices, it can successfully be applied, and use
classical interpolation for the rest of the image

• use only a subset of the LR images for reconstruction

• decide not to use Super-Resolution at all.

There is little work done in assessing the quality of SRIR.
Mostly, researchers deal with quality assessment using ref-
erence images to determine e.g. the most suitable image re-
construction algorithm [4, 5, 6]. Further, there exist a variety
of literature in the area of robust SRIR that allows to per-
form image reconstruction when deviations from the assumed
projections occur [7, 8]. The only paper, to the best of our
knowledge, that at least partly deals with the situation when
no reference image is available is [9], wherein the authors use
a metric to determine the degree of ringing and blurring in
the SRIR images. This metric is, however, highly image- and
contamination-dependent as it implicitly assumes that blur-
ring and high frequencies occur when SRIR is not successful.
However, both effects can naturally occur in images which
makes the method in [9] of limited use in practice. Only the
reference image based metrics presented in [9], such as the
mean square error (MSE) and the structural similarity index
measure (SSIM) [10] have been shown to reliably match the
obtained image quality.
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The contribution of this paper is the introduction of a
fully automatic framework for assessing the quality of Super-
Resolution Image Reconstruction without assuming a refer-
ence image to be available. We make use of the bootstrap
principle [11, 12] to resample with replacement from im-
age reconstruction residuals to estimate characteristics of the
probability density function (pdf) of the super-resolved im-
age. Given an estimate of such property, we demonstrate how
quality information of the conducted image reconstruction
can be acquired.

2. SIGNAL MODEL

Let the set of acquired LR images be denoted by {yl}L−1
l=0

where L denotes the total number of acquired images. Here,
every yl with l = 0, ..., L − 1 is a (N ·M) × 1 vector that
represents the vectorized version of the two-dimensionalN×
M image in lexicographic notation. The linear signal model
for each yl, l = 0, ..., L− 1 is then given by,

yl = Alx+ nl (1)

where x denotes the true underlying HR image of dimension
(p2 ·N ·M)× 1 with p being the downsampling factor. The
(N ·M) × (p2 · N ·M) matrix Al performs the projection
from the high-dimensional x to the low-dimensional yl for
l = 0, ..., L− 1 and the (N ·M)× 1 vector nl is the additive
noise component.

The projection matrix Al is a product of several matrices
that treat motion, blurring, downsampling, and other distor-
tions individually. A common modelling [1] is

Al = D ·B ·Ml (2)

where D is the (N ·M)×(p2 ·N ·M) matrix that performs the
downsampling by p in both image dimensions. The blurring
matrix of size (p2 ·N ·M)× (p2 ·N ·M) is denoted as B and
is related to the Point Spread Function (PSF) of the imaging
system. Finally, Ml is the (p2 · N ·M) × (p2 · N ·M) mo-
tion matrix that describes the relative motion between x and
the accordingly interpolated yl. The motion matrix operates
in the high-dimensional space which relates to sub-pixel dis-
placements of the LR images. Those sub-pixel displacements
and the hereby introduced aliasing effects are of fundamen-
tal importance in SRIR. Note that in Equation (2) the down-
sampling and blurring matrices are independent of the image
index l, l = 0, ..., L− 1.

3. SUPER-RESOLUTION IMAGE
RECONSTRUCTION

A large variety of SRIR algorithms exists, including the in-
tuitive non-uniform interpolation [13], frequency-domain ap-
proaches [14] and stochastic regularization [3], to name a

few. In this paper, we focus on stochastic regularization ap-
proaches. It is noted, however, that the proposed quality as-
sessment framework to be presented in Section 4 is indepen-
dent of the actual reconstruction technique and can straight-
forwardly be applied to any SRIR technique.

Consider the linear signal model in Equation (1). Under
the assumption of nl being i.i.d. Gaussian noise that is also
independent with the image index l, the Maximum A Posteri-
ori (MAP) estimator can be written as,

x̂ = argmax
x

p(x|y0, ...,yL−1) (3)

leading to the following optimization problem [3]

x̂ = argmin
x

{
L−1∑
l=0

||yl −Alx||2 + ρ · φ(x)

}
(4)

where ρ is the regularization parameter and φ(x) includes the
Markov-Random-Field (MRF) - prior that is typically imple-
mented as a function of the image derivative [15]. Equation
(4) can efficiently be implemented by gradient descent algo-
rithms such as the conjugate gradient (CG) algorithm [16].

It is noted that in practice, the matrices Al, l = 0, ..., L−
1 in Equation (4) are replaced by their estimates Âl, l =
0, ..., L − 1. The estimates are obtained by independently or
jointly estimating e.g. the blurring and most importantly the
motion between the LR images [17, 18, 19].

4. QUALITY ASSESSMENT

It is known [1] that the success of SRIR is highly depen-
dent on the estimation quality of the projection matrices Al,
l = 0, ..., L − 1. In scenarios where accurate estimates of
these matrices cannot be obtained, the image quality dras-
tically degrades, introducing strong artifacts that deteriorate
any follow-on task such as detection, classification or seg-
mentation.

The output of SRIR, e.g. by use of Equation (4) is an
estimate of the true HR image, x. A meaningful objective
quality metric should be a function of this estimate x̂. We note
that x̂ is a realization of a random vector X̂ that follows an
(unknown) pdf fX̂(x̂). This pdf displays the variability of the
image reconstruction, given the observations {yl}L−1

l=0 which
again are drawn from the (unknown) multivariate distribution
fY1,Y2,...,YL

(y1,y2, ...,yL).
The pdf of X̂ gives strong insight into the quality of SRIR.

The ideal pdf of the HR image estimate woud be fX̂(x̂) =
δ(x̂ − x) where δ is Dirac’s delta. This would allow for per-
fect image reconstruction. The more the actual pdf deviates
from a highly concentrated pdf, the lower is the confidence
in the quality of SRIR. We can thus re-formulate the problem
of quality assessment of SRIR by estimating a corresponding
characteristic of the pdf of the HR image estimate fX̂(x̂) and
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evaluating its variability or any other measure for the devia-
tion from a Dirac delta.

Ideally, the pdf fX̂(x̂) would be obtained by running the
experiment independently many times, estimating x for each
of those experiments and based on the set of estimated HR
images estimate the density fX̂(x̂). ’Running the experiment
many times’ in the SRIR scenario would mean to fix the set of
projection matrices {Al}L−1

l=0 as well as the noise density and
then draw i.i.d. LR images {yl}L−1

l=0 . Clearly, this approach is
infeasible in practice as the experimental conditions are typ-
ically non-stationary and keeping the projection matrices Al

constant for all l is highly impractical. In most SRIR appli-
cations, one is faced with a single set of measurements only,
from which inference shall be drawn.

The bootstrap [20, 11, 12] is a tool that allows to draw
statistical inference by resampling with replacement from
few measurements. It is especially useful in applications
where few data samples are available, experiments cannot
be repeated and no analytical solutions are available. The
bootstrap has been applied successfully to estimate, e.g., con-
fidence intervals of detection results and parameter estimates,
e.g. in radar imaging [21] and objective speech quality en-
hancement [22]. In the sequel, we describe a bootstrap based
method to estimate the objective characteristic of the pdf
fX̂(x̂) from a single set of measurements {yl}L−1

l=0 as well
as, based on it, draw conclusions on the relative quality of
different low-resolution data sets used for SRIR. Consider
the linear signal model in Equation (1). Given an estimate
of the HR image x - obtained by any of the existing SRIR
techniques - one can obtain an estimate of the noise vectors
nl, l = 0, ..., L− 1 as

n̂l = yl −Alx̂ (5)

for l = 0, ..., L − 1. As nl per definition is i.i.d. for all l,
we propose resampling with replacement from the residuals
n̂l for all l and thus obtaining pseudo noise data n̂b

l with l =
0, ..., L − 1 and b = 0, ..., B − 1 where B denotes the total
number of bootstrap resamples. The pseudo noise data can in
turn be considered to generate pseudo LR images as

yb
l = Alx̂+ n̂b

l (6)

resulting in B new sets of LR images
{
yb
l

}L−1

l=0
with b =

0, ..., B− 1. These B sets can now be used independently for
SRIR to obtainB pseudo HR images x̂b with b = 0, ..., B−1,
from which the desired characteristic of fX̂(x̂) can be esti-
mated. It is known that for L → ∞ the pseudo data pdf
approaches the true pdf fX̂(x̂), given the signal model
holds. The variability of fX̂b(x̂b) when different sets of
low-resolution images are used, can now be used as a mea-
sure of relative image reconstruction quality, i.e. the more
fX̂b(x̂b) deviates from Dirac’s delta the less reliable is the
reconstructed image x̂. A simple metric that describes this
characteristic and which can be used to infer relative quality

information is the mean intensity variance (MIV)

MIV(x̂) =
1

NM

NM∑
n=0

1

B

(
x̂b(n)− 1

B

B−1∑
b=0

x̂b(n)

)2

(7)

which displays the mean variance of the pixel intensity over
all bootstrap realizations.

Table 1. The Bootstrap procedure
Step 0. Data Collection. Conduct the experiment and collect

L LR images yl, l = 0, ..., L− 1.
Step 1. Preprocessing. Estimate the projection matrices Al,

l = 0, ..., L− 1 using e.g. motion and blur estimation
techniques.

Step 2. Image Reconstruction. Estimate an HR image x̂, e.g.
by considering a MAP approach as

x̂ = argmin
x

{
L−1∑
l=0

||yl −Alx||2 + ρ · φ(x)

}

Step 3. Resampling. Calculate n̂l = yl−Alx̂, l = 0, ..., L−
1 and generate B bootstrap realizations n̂b

l , l =
0, ..., L − 1 and b = 0, ..., B − 1 by resampling with
replacement from n̂l, l = 0, ..., L− 1.

Step 4. Generate pseudo LR images. Calculate B sets of
pseudo LR images as
yb
l = Alx̂+ n̂b

l , l = 0, ..., L−1 and b = 0, ..., B−1.
Step 5. Bootstrap HR images. Calculate B pseudo HR im-

ages as

x̂b = argmin
x

{
L−1∑
l=0

||yb
l −Alx||2 + ρ · φ(x)

}

with b = 0, ..., B − 1
Step 6. Quality metric estimation. Estimate the mean inten-

sity variance as

MIV(x̂) =
1

NM

NM∑
n=0

1

B

(
x̂b(n)− 1

B

B−1∑
b=0

x̂b(n)

)2

The bootstrap procedure is summarized in Table 1 whereby
we restricted ourselves to the MAP approach for SRIR and
the MIV as quality metric, noting, however, that the actual
procedure of estimating the proposed characteristic of fX̂(x̂)
is independent of the considered SRIR technique and also dif-
ferent quality metrics can easily be extracted from the density
fX̂b(x̂b).
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5. RESULTS

We consider a set of different simulation setups in order to
validate the performance of the proposed quality metric and
its ability to map the degree of contamination in LR images.
In the first simulation setup, we consider two LR images ob-
tained from one HR image by a downsampling factor of p =
2, Gaussian blur and a relative shift of 0.5 pixels.

To show the performance of the proposed bootstrap-based
quality metric, we choose the well-known SSIM [10] for com-
parision. Note that the SSIM is a reference-based image qual-
ity metric that needs a successful image reconstruction to be
available. This is never the case in practice and as such, the
SSIM is considered as clairvoyant metric that can only be
used in a fully controlled simulation setup. The bootstrap-
based quality metric, on the other hand, is not based on the
assumption of having a reference image available but draws
inference from the data at hand. Such a direct comparison of
the two approaches is meaningless in terms of absolute image
quality, but the performance of the proposed approach can be
measured in terms of how well our results of inappropriate
combinations of low-resolution images match with the results
from a reference image-based approach.

(a) SSIM versus noise (b) SSIM vs. motion errors

(c) Proposed metric versus noise (d) Proposed metric versus motion
errors

Fig. 1. Comparison of the proposed bootstrap-based quality
metric and the SSIM

We choose additive white Gaussian noise and transla-
tional motion errors as contaminations to be examined in
the following. In Figure 1, the two metrics are plotted as a
function of the SNR using 100 Monte Carlo simulations and
the translational motion. Considering the additive noise, the
SSIM in Figure 1(a) remains close to unity for high SNR and
then linearly decreases with decreasing SNR. The proposed
metric in Figure 1(c) is consistent with this observation.

Firstly, it is noted that the bootstrap-based metric monoton-
ically increases with increasing contamination. Secondly, it
shows a similar trend as the reference image-based SSIM.
It is approximately constant for high SNR and then linearly
increases with decreasing SNR.
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Fig. 2. Histogram of the bootstrap-based quality metric in-
tensity variances for data sets with different levels of motion
errors

A similar effect can be observed when considering mo-
tion errors in Figures 1(b) and 1(d). As expected, the SSIM
strongly decreases when adding few motion errors and then
remains approximately at a constant (poor) quality. The
bootstrap-based quality metric in Figure 1(d) on the other
hand quickly increases for few motion errors and then also
remains approximately constant.

Figure 2 depicts the histogram of the pixel intensity vari-
ances in HR images estimated fromB sets of bootstrap-based
low-resolution images. We consider different motion errors
for one low-resolution image in each data set. Again, we
can observe that the bootstrap-based quality metric correctly
maps the underlying degree of contamination.

6. CONCLUSION

An objective metric for quality estimation of Super-Resolution
image reconstruction has been presented. It is based on the
idea of resampling image residuals using the bootstrap to ob-
tain pseudo high resolution images. By doing so, a probabili-
tiy density function of the high resolution images is obtained,
from which a quality metric is infered. The proposed tech-
niques are independent of the actual reconstruction algorithm
and allow for an automatic framework for image reconstruc-
tion with quality assurance. Results on simulated data have
shown that the bootstrap-based quality metric shows a strong
correlation with reference-based metrics such as SSIM.
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