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ABSTRACT

We study the recursive robust principal components’ analysis (PCA)
problem. Here, “robust” refers to robustness to both independent and
correlated sparse outliers. If the outlier is the signal-of-interest, this
problem can be interpreted as one of recursively recovering a time
sequence of sparse vectors, St, in the presence of large but struc-
tured noise, Lt: the noise needs to lie in a “slowly changing” low
dimensional subspace. We study a novel solution called Recursive
Projected CS (ReProCS). Under mild assumptions, we show that,
with high probability (w.h.p.), at all times, ReProCS can exactly re-
cover the support set of St; and the reconstruction errors of both St

and Lt are upper bounded by a time-invariant and small value.

Index Terms— robust PCA, compressive sensing

1. INTRODUCTION
This work studies the recursive robust principal components’ analy-
sis (PCA) problem. A key application where this occurs is in video
analysis where the goal is to separate a slowly changing background
from moving foreground objects [1, 2]. If we stack each frame as
a column vector, the background is well modeled as lying in a low
dimensional subspace that may gradually change over time, while
the moving foreground objects constitute the sparse outliers [3, 2]
which change in a correlated fashion over time. Other applications
include sensor networks based detection and tracking of abnormal
events such as forest fires or oil spills; or online detection of brain
activation patterns from functional MRI (fMRI) sequences (the “ac-
tive” part of the brain can be interpreted as a correlated sparse out-
lier). In many of these applications, an online solution is desirable.
In this work, we focus on this case, i.e. on recursive robust PCA that
is robust to both independent and correlated sparse outliers.

The moving objects or the brain active regions or the oil spill re-
gion may be “outliers” for the PCA problem, but in most cases, these
are actually the signals-of-interest whereas the background image is
the noise. Also, all the above signals-of-interest are sparse vectors
that change in a correlated fashion over time. Thus, this problem can
also be interpreted as one of recursively recovering a time sequence
of correlated sparse signals, St, from measurements Mt := St +Lt

that are corrupted by (potentially) large magnitude but dense and
structured noise, Lt. The structure that we require is that Lt be
dense and lie in a low dimensional subspace that is either fixed or
changes “slowly enough” in the sense quantified in Sec 2.1.

Related Work. There has been a large amount of work on
robust PCA, e.g. [1, 2, 4, 5, 6, 7, 8], and recursive robust PCA
e.g. [9, 10, 11]. These works either assume that the locations of
the missing/corruped data points are assumed known (not a practi-
cal assumption); or throw out the entire outlier vector [7, 8] (this is a
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problem if most frames contain outliers) or cannot detect small mag-
nitude outliers [10, 1, 11], St, (this is needed when St is the signal
of interest). Moreover, except [7, 8], the others do not come with
any performance guarantees either. In recent work [2, 4], a new el-
egant solution to robust PCA called Principal Components’ Pursuit
(PCP) has been proposed, that removes the above limitations. It re-
defines batch robust PCA as a problem of separating a low rank ma-
trix, Lt := [L1, . . . , Lt], from a sparse matrix, St := [S1, . . . , St],
using the measurement matrix,Mt := [M1, . . . ,Mt] = Lt +St. It
was shown in [2] that one can recover Lt and St exactly by solving
min
L,S
‖L‖∗ + λ‖S‖1 subject to L+ S =Mt provided that (a) Lt is

dense (its left and right singular vectors satisfy certain conditions);
(b) any element of the matrix St is nonzero w.p. %, and zero w.p.
1 − %, independent of all others (in particular, this means that the
support sets of the different St’s are independent over time); and (c)
the rank of Lt and the support size of St are small enough. Here
‖A‖∗ is the nuclear norm of A (sum of singular values of A) while
‖A‖1 is the `1 norm of A seen as a long vector.

In many practical applications, e.g. video analysis, it is fair to
assume that the background changes are dense (i.e. Lt is dense).
However, the assumption that the foreground support is independent
over time is not a valid one. Foreground objects typically move in
a correlated fashion, and may even not move for a few frames. This
often results in St being sparse as well as low rank. In the case
where Lt is low rank and dense, but St is both sparse and low rank,
in general, PCP [2, 4] will not work. Without any extra information,
it is also not clear how else to separate St and Lt. But suppose
that an initial short sequence of Lt’s is available. For example, in
the video application, it is often realistic to assume that an initial
background-only training sequence is available. The question is, can
we use this to do anything better?

Contribution. In [12, 13], we first studied this problem and
proposed a novel solution called Recursive Projected CS (ReProCS).
In this work we develop a modification of the algorithm of [12] that
can be analyzed more easily. The key contribution of this work is as
follows. Under mild assumptions, we show that, w.h.p, ReProCS can
exactly recover the support set of St at all times; and the reconstruc-
tion errors of both St and Lt are upper bounded by a time invariant
and small value at all times. If Lt is the signal of interest, then Re-
ProCS is a solution to recursive robust PCA in the presence of sparse
and possibly correlated outliers. To the best of our knowledge, this
is the first rigorous analysis of any recursive (online) robust PCA ap-
proach and definitely the first to study recursive (online) robust PCA
with correlated outliers. Ours is also among the first few works that
studies recursive sparse recovery in (potentially) large but structured
noise: the noise needs to lie in a “slowly changing” low dimensional
subspace as defined in Sec 2.1. Works that study a related problem
of sparse signal recovery from large but sparse noise (outlier) in-
clude [3, 14, 15]. Since these algorithms are designed for a single
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signal (without using past or future information), these can also be
interpreted as solutions for recursive sparse recovery from large but
sparse noise.

Notation. For a set T ⊂ {1, 2, . . . n}, we use |T | to denote
its cardinality, i.e., the number of elements in T . For a vector v, vi
denotes the ith entry of v and vT denotes a vector consisting of the
entries of v indexed by T . We use ‖v‖p to denote the `p norm of v.

For a matrix B, B′ denotes its transpose, and B† its Moore-
Penroe pseudo-inverse. We use ‖B‖2 := maxx6=0 ‖Bx‖2/‖x‖2 to
denote the induced 2-norm of the matrix. For a Hermitian matrix,
B, we use the notation B

EV D
= UΛU ′ to denote the eigenvalue

decomposition of B. Here U is an orthonormal matrix and Λ is a
diagonal matrix with entries arranged in non-increasing order. We
use I to denote an identity matrix. For an index set T and a matrix
B, BT is the sub-matrix of B containing columns with indices in the
set T . For a tall matrix P , span(P ) denotes the subspace spanned by
the column vectors of P . The notation [.] denotes an empty matrix.

Definition 1 We refer to a matrix P as a basis matrix if P ′P = I .

The s-restricted isometry constant (RIC) [16], δs, for an n×m
matrix Ψ is the smallest real number satisfying (1 − δs)‖x‖22 ≤
‖ΨTx‖22 ≤ (1+δs)‖x‖22 for all sets T ⊆ {1, 2, . . . n} with |T | ≤ s
and all real vectors x of length |T |.

2. PROBLEM FORMULATION
The measurement vector at time t, Mt, is an n dimensional vector
which can be decomposed as

Mt = Lt + St (1)

Here St is a sparse vector with support set size at most s and min-
imum magnitude of nonzero values at least Smin. Lt is a dense
but low dimensional vector that satisfies the model given below.
We are given an accurate estimate of the subspace in which the
initial ttrain Lt’s lie, i.e. we are given a basis matrix P̂0 so that
‖(I−P̂0P̂

′
0)P0‖2 is small. Here P0 is a basis matrix for span(Lttrain),

i.e. span(P0) = span(Lttrain). The goal is

1. to estimate both St and Lt at each time t > ttrain, and

2. to estimate span(Lt) every so often.

Notation for St. Let Tt := {i : (St)i 6= 0} denote the support
of St. Define

Smin := min
t

min
i∈Tt

|(St)i|, and s := max
t
|Tt|

Model on Lt. The Lt’s satisfy the following model.

1. Lt lies in a low dimensional subspace that changes every-so-
often. Let tj denote the change times. Then Lt = P(t)at

with P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, 2 · · · J ,
i.e. there is a maximum of J subspace change times. We can
define tJ+1 = ∞. Here Pj is an n × rj basis matrix with
rj � n and rj � (tj+1 − tj).

2. At the change times, tj , Pj changes as Pj = [Pj−1 Pj,new]
where Pj,new is a n×cj,new basis matrix with P ′

j,newPj−1 = 0.
Thus rj = rj−1 + cj,new.

3. There exists a constant cmx such that 0 ≤ cj,new ≤ cmx.

4. The projection vector, at := P(t)
′Lt, is a random variable

(r.v.) with the following properties. (a) at’s are mutually in-
dependent over time, t. (b) It is a zero mean bounded r.v., i.e.
E(at) = 0 and there exists a constant γ∗ s.t. ‖at‖∞ ≤ γ∗

for all t. (c) Its covariance matrix Λt := Cov[at] = E(ata
′
t)

is diagonal with λ− := mint λmin(Λt) > 0 and λ+ :=
maxt λmax(Λt) < ∞. Thus the condition number of any

Λt is bounded by f := λ+

λ−
.

Moreover, Pj and at change slowly as quantified in Sec 2.1. Also,
the Lt’s, and hence their subspace basis matrices Pj , are dense,
i.e. the denseness coefficient κs(Pj), which is defined in Sec 2.2,
is small for all j.

2.1. Slow subspace change
By slow subspace change we mean all the following. First, the de-
lay between consecutive subspace change times, tj+1 − tj , is large
enough.

Second, the projection of Lt along the newly added direc-
tions, at,new, is initially small, i.e. maxtj≤t<tj+α ‖at,new‖∞ ≤
γnew, with γnew � γ∗ and γnew � Smin, but can increase gradually.
We model this as follows. Split the interval [tj , tj+1 − 1] into α
length periods. We assume that

max
j

max
t∈[tj+(k−1)α,tj+kα−1]

‖at,new‖∞ ≤ γnew,k := min(vk−1γnew, γ∗)

for a v > 1 but not too large. This assumption is verified for real
video data in [17, Sec X-A].

Third, the number of newly added directions is small, i.e.
cj,new ≤ cmx � r0. This is also verified in [17, Sec X-A].

2.2. Measuring denseness of a matrix and its relation with RIC
For a tall n × r matrix, B, or for a n × 1 vector, B, we define the
the denseness coefficient as follows:

κs(B) := max
|T |≤s

‖IT ′B‖2
‖B‖2

.

where ‖.‖2 is the matrix or vector 2-norm respectively. As we ex-
plain in Sec 5, κs(B) is related to the denseness assumptions re-
quired by PCP [2].

The lemma below relates the denseness coefficient of a basis
matrix P to the RIC of I − PP ′. The proof is in [17, Appendix].

Lemma 2 For an n× r basis matrix P (i.e P satisfying P ′P = I),

δs(I − PP ′) = κ2
s(P ).

3. RECURSIVE PROJECTED CS (REPROCS)
We summarize the Recursive Projected CS (ReProCS) algorithm in
Algorithm 1. It uses the following definition.

Definition 3 Define the time interval Ij,k := [tj + (k − 1)α, tj +
kα−1] for k = 1, . . .K and Ij,K+1 := [tj +Kα, tj+1−1]. Here,
K is the algorithm parameter in Algorithm 1.

The key idea of ReProCS is as follows. Assume that the cur-
rent basis matrix P(t) has been accurately predicted using past esti-
mates of Lt, i.e. we have P̂(t−1) with ‖(I − P̂(t−1)P̂

′
(t−1))P(t)‖2

small. We project Mt into the space perpendicular to P̂(t−1) to get
the projected measurement vector yt := Φ(t)Mt where Φ(t) =

I − P̂(t−1)P̂
′
(t−1) (step 1a). Since the n × n projection matrix,

Φ(t) has rank n − r∗ where r∗ = rank(P̂(t−1)), therefore yt has
only n − r∗ “effective” measurements1, even though its length is

1i.e. some r∗ entries of yt are linear combinations of the other n − r∗

entries
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Algorithm 1 Recursive Projected CS (ReProCS)
Parameters: algorithm parameters: ξ, ω, α, K, model parameters:
tj , r0, cj,new (set as in Theorem 4 or as in [17, Sec X-B] when the
model is not known)
Input: Mt, Output: Ŝt, L̂t, P̂(t)

Initialization: Given training sequence [L1, L2, · · · , Lttrain ], estimate

P̂0 by computing an EVD as 1
ttrain

∑ttrain
t=1 LtLt

′ EV D
= EΛE′ and

then retaining the eigenvectors with the r0 largest eigenvalues, i.e.,
P̂0 ← (E){1,2,··· ,r0}.
Let P̂(t) ← P̂0. Let j ← 1, k ← 1. For t > ttrain, do the following:

1. Estimate Tt and St via Projected CS:

(a) Nullify most of Lt: compute Φ(t) ← I−P̂(t−1)P̂
′
(t−1),

compute yt ← Φ(t)Mt

(b) Sparse Recovery: compute Ŝt,cs as the solution of
minx ‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ

(c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i| > ω}
(d) LS Estimate of St: compute (Ŝt)T̂t

=

((Φt)T̂t
)†yt, (Ŝt)T̂c

t
= 0

2. Estimate Lt: L̂t = Mt − Ŝt.

3. Update P̂(t) by Projection PCA

(a) If t = tj + kα− 1,

i. compute 1
α

∑

t∈Ij,k
(I −

P̂j−1P̂
′
j−1)L̂tL̂

′
t(I − P̂j−1P̂

′
j−1)

EV D
=

[

P̂j,new,k P̂j,new,k,⊥

]

[

Λk 0
0 Λk,⊥

] [

P̂ ′
j,new,k

P̂ ′
j,new,k,⊥

]

where Λk is of size cj,new × cj,new.

ii. set P̂(t) ← [P̂j−1 P̂j,new,k]; increment k ← k+1.

Else

i. set P̂(t) ← P̂(t−1).

(b) If t = tj + Kα − 1, then set P̂j ← [P̂j−1 P̂j,new,K ].
Increment j ← j + 1. Reset k ← 1.

4. Increment t← t+ 1 and go to step 1.

n. Notice that yt can be rewritten as yt = Φ(t)St + βt where
βt := Φ(t)Lt. Since ‖(I − P̂(t−1)P̂

′
(t−1))P(t)‖2 is small, the pro-

jection nullifies most of the contribution of Lt and so the projected
noise βt is small. Recovering the n dimensional sparse vector St

from yt now becomes a traditional sparse recovery or CS problem
in small noise [18, 19, 20, 21] (step 1b). If P(t), and hence its esti-
mate, P̂(t−1), is dense enough, then, by Lemma 2, the RIC of Φ(t)

is small enough. By [21, Thm 1], this ensures that St can be ac-
curately recovered from yt. By thresholding on the recovered St,
one gets an estimate of its support (step 1c). By computing a least
squares (LS) estimate of St on the estimated support and setting it
to zero everywhere else (step 1d), we can get a more accurate final
estimate, Ŝt, as first suggested in [22]. This Ŝt is used to estimate Lt

as L̂t = Mt− Ŝt (step 2). The sparse recovery error, et := St− Ŝt.
Since L̂t = Mt − Ŝt (step 2), et also satisfies et = Lt − L̂t. Thus,
a small et means that Lt is also recovered accurately. The estimated
L̂t’s are used to obtain new estimates of Pj,new every α frames for

a total of Kα frames via a modification of the standard PCA proce-
dure, which we call projection PCA (step 3).

The ReProCS idea is also somewhat related to that of [16, 23,
24] in that all of these also try to cancel the “low rank” part by pro-
jecting the original data vector into the perpendicular space of the
tall matrix that spans the “low rank” part. However the big differ-
ence is that in all these works, this matrix is known. In our problem
this matrix P(t) is unknown and can change with time.

4. PERFORMANCE GUARANTEES
We state the main result here first and then discuss it. For the proof,
see [17, Sections V, VI, VII].

Theorem 4 Consider Algorithm 1. Let c := cmx and r := r0 +
(J − 1)c. Assume that Lt obeys the model given in Sec. 2 and there
are a total of J change times. Assume also that the initial subspace
estimate is accurate enough, i.e. ‖(I − P̂0P̂

′
0)P0‖ ≤ r0ζ, for a ζ

that satisfies

ζ ≤ min(
10−4

r2
,
1.5× 10−4

r2f
,

1

r3γ2
∗
) where f :=

λ+

λ−

If the following conditions hold:

1. the algorithm parameters are set as ξ = ξ0(ζ), 7ρξ ≤
ω ≤ Smin − 7ρξ, K = K(ζ), α ≥ αadd(ζ), where
ξ0(ζ), ρ,K(ζ), αadd(ζ) are defined in Definition 5.

2. Pj−1, Pj,new, Dj,new,k := (I−P̂j−1P̂
′
j−1−P̂j,new,kP̂

′
j,new,k)Pj,new

and Qj,new,k := (I − Pj,newPj,new
′)P̂j,new,k have dense

enough columns, i.e.

κ2s(PJ−1) ≤ 0.3, max
j

κ2s(Pj,new) ≤ 0.15,

max
j

max
0≤k≤K

κ2s(Dj,new,k) ≤ 0.15,

max
j

max
0≤k≤K

κ2s(Qj,new,k) ≤ 0.15

with P̂j,new,0 = [.] (empty matrix).

3. for a given value of Smin, the subspace change is slow
enough, i.e.

max
j

(tj+1 − tj) > Kα,

max
j

max
tj+(k−1)α≤t<tj+kα

‖at,new‖∞ ≤ min(1.2k−1γnew, γ∗),

14ρξ0(ζ) ≤ Smin,

4. the condition number of the covariance matrix of at,new aver-
aged over t ∈ Ij,k, is bounded, i.e.

gj,k ≤
√
2

where gj,k is defined in Definition 5,

then, with probability at least (1− n−10), the following hold:

1. at all times, t, T̂t = Tt and ‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt −
St‖2 ≤ 0.18

√
cγnew + 1.2

√
ζ(
√
r + 0.06

√
c).

2. the subspace error SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2 satisfies

SE(t) ≤
{

(r0 + (j − 1)c)ζ + 0.4cζ + 0.6k−1 if t ∈ Ij,k,
(r0 + jc)ζ if t ∈ Ij,K+1

≤
{

10−2
√
ζ + 0.6k−1 if t ∈ Ij,k,

10−2
√
ζ if t ∈ Ij,K+1
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3. et follows a trend similar to that of SE(t) at various times (the
bounds are available in [17, Theorem ?].

Proof: See [17, Sections V, VI, VII].

Definition 5 We define here the parameters used in Theorem 4.

1. Define K(ζ) :=
⌈

log(0.6cζ)
log 0.6

⌉

2. Define ξ0(ζ) :=
√
cγnew +

√
ζ(
√
r +
√
c)

3. Define ρ := maxt{κ1(Ŝt,cs − St)}. Notice that ρ ≤ 1.

4. Let K = K(ζ). Define

αadd = d
4608(log 6KJ + 11 log n)

ζ2(λ−)2

max(min(1.24Kγ4
new, γ

4
∗),

16

c2
, 4(0.186γ2

new + 0.0034γnew + 2.3)2)e.

In words, αadd is the smallest value of the number of data
points, α, needed for one projection PCA step to ensure that
Theorem 4 holds w.p. at least (1− n−10).

5. Define the condition number of Cov(at,new) averaged over t ∈
Ij,k as gj,k :=

λj,new,k
+

λj,new,k
−

where

λj,new,k
+ := λmax(

1
α

∑

t∈Ij,k
(Λt)new), and

λj,new,k
− := λmin(

1
α

∑

t∈Ij,k
(Λt)new).

This result says the following. Assume that the initial subspace
error is small enough. If (a) the algorithm parameters are set appro-
priately; (b) the matrices defining the previous subspace, the newly
added subspace, and the currently unestimated part of the newly
added subspace are dense enough; (c) the subspace change is slow
enough; and (d) the condition number of the average covariance ma-
trix of at,new is small enough, then, w.h.p., we will get exact support
recovery at all times. Moreover, the sparse recovery error will al-
ways be bounded by 0.18

√
cγnew plus a constant times

√
ζ. Since

ζ is very small, γnew � Smin, and c is also small, the normalized
reconstruction error for recovering St will be small at all times.

In the second conclusion, we bound the subspace estimation er-
ror, SE(t). When a subspace change occurs, this error is initially
bounded by one. The above result shows that, w.h.p., with each
projection PCA step, this error decays exponentially and falls below
0.01
√
ζ within K projection PCA steps. The third conclusion shows

that, with each projection PCA step, w.h.p., the sparse recovery error
as well as the error in recovering Lt also decay in a similar fashion.

Notice that K = K(ζ) is larger if ζ is smaller. Also, αadd is
inversely proportional to ζ. Thus, if we want to achieve a smaller
lowest error level, ζ, we need to compute projection PCA over larger
durations α and we need more number of projection PCA steps K.

5. DISCUSSION AND COMPARISON WITH PCP RESULT
We provide a qualitative comparison with [2]. A direct compari-
son is not possible since the proof techniques used are very different
and since we solve a recursive version of the problem where as PCP
solves a batch one. Moreover, PCP provides guarantees for exact
recovery of St and Lt. In our result, we obtain guarantees for exact
support recovery of the St’s (and hence of St) and bounded error
recovery of its nonzero values and of Lt. Also, PCP assumes no
model knowledge, whereas our algorithm does assume knowledge
of model parameters. Of course, in [17, Sec X-B], we explain how
to set the parameters when the model is not known.

The first key difference between our result and that of PCP [2]
is as follows. The result for PCP [2] assumes that any element of the
n× t matrix St is nonzero w.p. %, and zero w.p. 1− %, independent
of all others (in particular, this means that the support sets of the dif-
ferent St’s are independent over time). This ensures that w.h.p. St is
sparse but full rank and hence ensures that it can be separated from
Lt which is low rank but dense. As explained earlier, the assump-
tion of independent support sets of St is not valid for real video data
where the foreground objects usually move in a highly correlated
fashion over time. On the other hand, our result for ReProCS does
not put any such assumption on the support sets of the St’s. The
reason it can do this is because it assumes accurate knowledge of the
subspace spanned by the first few columns of Lt and it assumes slow
subspace change (verified in [17, Sec X-A]), both of which are prac-
tically valid assumptions. However, ReProCS does need denseness
of Dj,new,k, whose columns span the currently unestimated part of
span(Pj,new). In simulations, we observe that this reduces when the
support of St changes very infrequently.

Next let us compare the denseness assumptions. Let Lt =
UΣV ′ be its SVD. Then, for t ∈ [tj , tj+1 − 1], U = [Pj−1, Pj,new]
and V = [a1, a2 . . . at]

′Σ−1. PCP [2] assumes denseness of U and
of V : it requires κ1(U) ≤

√

µr/n and κ1(V ) ≤
√

µr/n for a
constant µ ≥ 1. Moreover, it also requires ‖UV ′‖max ≤ √µr/n.
Here ‖B‖max := maxi,j |(B)i,j |. On the other hand, our denseness
assumptions are on Pj−1 and Pj,new which are sub-matrices of U .
We do not need denseness of V and we do not bound ‖UV ′‖max.

However, some additional assumptions that we need are (a)
denseness of Dj,new,k and of Qj,new,k; (b) the independence of at’s
over time and (c) condition number of the average covariance matrix
of at,new, is not too large. (c) is an assumption made for simplicity.
As explained in [25], this can be removed and replaced if the newly
added eigenvalues can be separated into a few clusters, each with
small condition number. (b) is assumed so that we can use the matrix
Hoeffding inequality [26, Theorem 1.3] to obtain high probability
bounds on the terms in the subspace error bound. In experiments,
we are able to also deal with correlated at’s. As explained in [17],
it should be possible to replace it by a milder assumption. Consider
(a). Our proof only needs ‖ITt

′Dj,new,k‖2/‖Dj,new,k‖2 to be small
at every projection PCA time. We attempted to verify this in simula-
tions done with a dense Pj and Pj,new. Except for the case of exactly
constant support of St, in all other cases (including the case of very
gradual support change), this ratio was small for most projection
PCA times. We also saw that even if at a few projection PCA times,
this ratio was close to one, that just meant that, at those times, the
subspace error remained roughly equal to that at the previous time.
As a result, a larger K was required for the subspace error to become
small enough. It did not mean that the algorithm became unstable. It
should be possible to use a similar idea to modify our result as well.
An analogous discussion applies to Qj,new,k.

Extensive experimental comparisons with other works are
available at http://www.ece.iastate.edu/˜chenlu/
ReProCS/ReProCS.htm and will be discussed in forthcoming
work.

6. CONCLUSIONS AND FUTURE WORK
We studied the recursive (online) robust PCA problem, which can
also be interpreted as a problem of recursive sparse recovery in the
presence of large but structured noise. Under mild assumptions, we
showed that, w.h.p., ReProCS can exactly recover the support set of
St at all times; and the reconstruction errors of both St and Lt are
upper bounded by a time-invariant and small value. In ongoing work
[25], we are developing and analyzing ReProCS with deletion.
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