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Maciej Niedźwiecki and Marcin Ciołek

Faculty of Electronics, Telecommunications and Computer Science, Department of Automatic Control
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ABSTRACT
The paper presents a new approach to elimination of broadband
noise and impulsive disturbances from archive audio recordings.
The proposed adaptive Kalman-like algorithm, based on a sparse au-
toregressive model of the audio signal, simultaneously detects noise
pulses, interpolates the irrevocably distorted samples and performs
signal smoothing. It is shown that bidirectional (forward-backward)
processing of the archive signal improves smoothing efficiency
and allows one to localize noise pulses more accurately, leading to
noticeable performance improvements compared to unidirectional
processing.

Index Terms— Restoration of audio signals, adaptive signal
processing, sparse autoregressive models, bidirectional processing

1. INTRODUCTION

Archived audio recordings are often degraded by broadband noise
and impulsive disturbances. Broadband noise, such as surface noise
of magnetic tapes and phonograph records, is an inherent part of
all analog recordings. Impulsive disturbances, such as clicks and
pops, are usually caused by aging and/or mishandling of the record-
ing medium, as well as by transmission or equipment artifacts – for
more details see [1]–[7]. Elimination of both kinds of disturbances
from archive audio documents is an important element of saving our
cultural heritage.

We will assume that the sampled audio signal y(t), corrupted
by a mixture of a broadband noise v(t) and impulsive disturbances
z(t), has the form

y(t) = s(t) + v(t) + z(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimensionless)
discrete time and s(t) denotes the undistorted (clean) audio signal.
We will regard {v(t)} as a normally distributed white noise sequence
v(t) ∼ N (0, σ2

v). We will not use any probabilistic model of the se-
quence of noise pulses. The following coarse “save or reject” model
will be adopted instead

z(t) ∼ N (0, σ2
z(t)), σ

2
z(t) =

{
0 if d(t) = 0
∞ if d(t) = 1

where d(t) denotes the pulse location function

d(t) =

{
0 noise pulse absent
1 noise pulse present

.

Note that when σ2
z(t) =∞, the measurement y(t) contains no use-

ful information about the signal s(t), i.e., it should be regarded as a
missing sample.

Unlike [1]–[7], where restoration is based on an autoregressive
(AR) or an autoregressive moving average (ARMA) signal represen-
tation, the following sparse autoregressive (SAR) model of the audio
signal will be used for restoration purposes

s(t+ 1) =

r∑
i=1

αi(t)s(t− i+ 1) + β(t)s(t− T [t] + 1) + n(t)

(2)

where α1(t), . . . , αr(t) and β(t) denote the short-term and long-
term autoregressive coefficients, respectively, T [t] � r denotes the
instantaneous fundamental period of the signal (e.g. in the case of
speech signals the period of pitch excitation, if present), and n(t) ∼
N (0, σ2

n(t)) denotes white driving noise, uncorrelated with the mea-
surement noise. Even though formally of order T [t], such a model is
sparse as it contains only r + 1 � T [t] nonzero coefficients. SAR
models capture both short-term correlations, taken care of by the first
component on the right-hand side of (2), and long-term correlations,
taken care of by the second component on the right hand side of
(2) of the analyzed time series. So far SAR models have been used
mainly for the purpose of speech processing – see e.g. [8]–[11].

Assuming that the archived recording is processed off-line,i.e.,
that the entire measurement history Y (N) = {y(1), . . . , y(N)} is
available, we will work out the estimate of the clean audio signal.
This general problem requires solution of several subproblems, such
as detection of noise pulses, interpolation of irrevocably distorted
samples and signal smoothing.

2. UNIDIRECTIONAL PROCESSING

The algorithm proposed in this paper is made up of several si-
multaneously operated sub-algorithms used for signal estimation,
signal identification and outlier detection, respectively. These sub-
algorithms are appropriately coupled, e.g. the identification routines
use the signal “cleaned up” by the estimation routine and the estima-
tion routine uses current estimates of process coefficients, provided
by the identification routines.

2.1. Signal interpolation/smoothing

The best, in the mean-square sense, estimates of the signal s(t)
governed by (1) – (2) can be obtained using the appropriately de-
signed Kalman smoother [12]. However, since (2) is an autore-
gressive model of order T [t], its equivalent state space description,
which serves as a basis for designing Kalman algorithm, involves
T [t] space variables – much too large considering that the typical
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values of T [t] are well in excess of 100. For this reason some sim-
plifications are needed to reduce computational complexity of the
restoration algorithm.

Suppose that the maximum length of detection alarms is set to
kmax, which means that up to kmax samples in a row can be ques-
tioned and interpolated. Let q = r + kmax + 1. We will assume
that q < Tmin, where Tmin denotes the minimum allowable value of
the fundamental period T [t]. The following pseudo-state-space rep-
resentation of the SAR model (2) will serve as a basis for designing
the filtering/interpolation/smoothing algorithm

ψ(t+ 1) = A(t)ψ(t) + b(t)u(t) + cn(t)

y(t) = cTψ(t) + ζ(t) (3)

where ζ(t) = v(t) + z(t), ψ(t) = [s(t), . . . , s(t− q+1]T denotes
the “state” vector, u(t) is an estimate of s(t − T [t] + 1), treated as
an exogenous (measurable) input signal, and

A(t) =


α̂1(t) · · · α̂r(t) 0 · · · 0 0
1 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 1 0



b(t) = [β̂(t), 0, . . . , 0]T, c = [1, 0, . . . , 0]T.

According to (3), the SAR model (2) is treated as an ARX model
(autoregressive with exogenous input), i.e., the quantity s(t−T [t]+
1) appearing in the long-correlation term in (2) is regarded as an
external excitation, rather as an internal (state) variable.

Designing the Kalman filter based on such an improper state
space model, one arrives at the following reduced-complexity algo-
rithm which preserves important features of the genuine Kalman in-
terpolator/smoother

ψ̂(t|t− 1) = A(t− 1)ψ̂(t− 1|t− 1) + b(t− 1)u(t)

Σψ(t|t− 1) = A(t− 1)Σψ(t− 1|t− 1)AT(t− 1) + ccT

e(t) = y(t)− cTψ̂(t|t− 1)

Lψ(t) =

{
Σψ(t|t−1)c

cTΣψ(t|t−1)c+κ(t−1)
if d̂(t) = 0

0 if d̂(t) = 1

ψ̂(t|t) = ψ̂(t|t− 1) + Lψ(t)e(t)

Σψ(t|t) = [I− Lψ(t)c
T]Σψ(t|t− 1) (4)

where κ(t−1) = σ̂2
v/σ̂

2
n(t−1), and d̂(t) denotes decision of the out-

lier detector. Since ψ̂(t|t) is the estimate ofψ(t) = [s(t), . . . , s(t−
q+1)]T based on the measurements Y (t), the last element of ψ̂(t|t)
can be regarded as a smoothed estimate of s(t− q + 1)

ŝ(t− q + 1|t) = ψ̂T(t|t)g, g = [0, . . . , 0, 1]T. (5)

Finally, as the input signal u(t), one can use the estimate

u(t) = ŝ(t− T̂ [t] + 1|t− T̂ [t] + q). (6)

2.2. Estimation of autoregressive coefficients

Using the shorthand notation η(t) = [s(t), . . . , s(t − r + 1)]T,
ϕ(t) = [ηT(t), s(t− T [t] + 1)]T, α(t) = [α1(t), . . . , αr(t)]

T and

θ(t) = [αT(t), β(t)]T, the SAR model can be written down in the
form

s(t+ 1) = ϕT(t)θ(t) + n(t).

The following exponentially weighted least squares (EWLS) algo-
rithm can be used to track the time-varying parameters of the SAR
model [14]

θ̂(t) = θ̂(t− 1) + Lθ(t)ε(t)

ε(t) = ŝ(t|t)− ϕ̂T(t− 1)θ̂(t− 1)

Lθ(t) =
Σθ(t− 1)ϕ̂(t− 1)

λ+ ϕ̂T(t− 1)Σθ(t− 1)ϕ̂(t− 1)

Σθ(t) =
1

λ

[
I− Lθ(t)ϕ̂

T(t− 1)
]
Σθ(t− 1) (7)

where λ, 0 < λ < 1 denotes the forgetting constant and ŝ(t|t) =

ψ̂T(t|t)c. The quantity ϕ̂(t) denotes the estimate of the regres-
sion vector provided by the signal estimation sub-algorithm ϕ̂(t) =
[η̂T(t), u(t)]T, where η̂(t) is made up of the first r components of
ψ̂(t|t) and u(t) is given by (6).

2.3. Estimation of the fundamental period

The usefulness of the SAR model (2) critically depends on precise
knowledge of the fundamental period T [t]. In many cases detec-
tion/interpolation performance may drop significantly even if the es-
timated value of T [t] differs from its true value by only one or two
samples. Denote by Tmin/Tmax the smallest/largest values of the
fundamental period that will be considered. At each time instant
t four competitive estimates of the fundamental period are consid-
ered: T̂i(t), i = 1, . . . , 4. These estimates are obtained by means
of minimizing, over T ∈ [Tmin, Tmax], the sums of squared differ-
ences between the selected fragments of the analyzed audio signal.
In the first two cases (i = 1, 2), one finds the best match between
themmost recent samples ŝ(·) (in our experimentsm was set to 50)
of the already processed signal and the analogous sequence derived
either from the past of the signal ŝ(·) (i = 1) or from the past of
the original (unprocessed) signal y(·) (i = 2). The second variant
helps one to avoid ‘serial’ detection errors which occur when a sin-
gle incorrect decision of an outlier detector starts a chain of related
‘derivative’ decision errors. In the last two cases (i = 3, 4), the ref-
erence frame is made up of the m− 10 most recent samples and 10
‘future’ samples (not yet processed). This often allows one to ob-
tain more precise estimates of the fundamental period – unless the
‘future’ samples are severely distorted. The final estimate T̂ [t] is the
one that provides the best match.

2.4. Estimation of noise variances

The local (exponentially weighted) estimate of σ2
n(t) takes the form

σ̂2
n(t) =

{
λσ̂2

n(t− 1) + (1− λ)ε2(t) if d̂(t) = 0

σ̂2
n(t− 1) if d̂(t) = 1

.

The intensity of the measurement noise v(t) is usually constant for
a given recording and can be estimated by means of processing the
“silent” fragments [s(t) = 0] of the analyzed recording.
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2.5. Detection of noise pulses

Similar to [4]–[5], the outlier detection is based on monitoring pre-
diction errors. The detection alarm starts [d̂(t) = 1] when the
model-based one-step-ahead prediction error exceeds µ times its es-
timated standard deviation (typically µ ∈ [3, 5])

|e(t)| > µσ̂e(t)

and it is continued [d̂(t) = . . . = d̂(t + k0 − 1) = 1] until r
consecutive prediction errors are sufficiently small, namely: |e(t +
k0 + i)| ≤ µσ̂e(t + k0 + i), i = 0, . . . , r − 1, or until the length
of the detection alarm D = [t, . . . , t+ k0 − 1], equal to k0, reaches
its maximum allowable value kmax. The estimates of the prediction
error variance can be obtained from σ̂2

e(t) = γ(t)σ̂2
n(t − 1), where

γ(t) = cTΣψ(t|t− 1)c + κ(t− 1).

3. BIDIRECTIONAL PROCESSING

All causal detection algorithms, such as the one described in the pre-
vious section, localize and schedule for interpolation fragments that
are “unpredictable”, i.e., inconsistent with the signal past. However,
outlier detectors based on forward consistency checks have some
obvious limitations – whenever characteristics of the proposed au-
dio signals change abruptly, e.g. at the beginning of new sounds,
they generate false detection alarms. Since many of the questioned
fragments are consistent with the signal future, rather than its past,
the number of false alarms can be reduced if detection is based on
backward consistency checks, which is possible when the analyzed
signal is processed backward in time. The best performance can
be achieved if the results of forward-time and backward-time detec-
tion/interpolation are combined appropriately. From this point on,
we will assume that two detection signals are available: d̂f(t) and
d̂b(t), obtained by means of forward-time and backward-time pro-
cessing, respectively. The backward-time algorithm is identical with
the forward-time one but it processes time-reversed data.

3.1. Preprocessing

Unlike artificially generated noise pulses, real impulsive distur-
bances corrupting audio signals are rarely confined to isolated
samples. Moreover, most of them have “soft” edges (the more so,
the higher sampling rate) which stems from the typical geometry
of local damages of the recording medium (e.g. groove damages).
The straightforward consequence of this fact is that detection alarms
are seldom triggered at the very beginning of noise pulses. This
may lead to small but audible distortions of the reconstructed audio
material. Although detection delays can be reduced, or even elim-
inated, by lowering the detection multiplier µ, i.e., by making the
outlier detector more sensitive to “unpredictable” signal changes,
the improvement comes at a price: low detection thresholds may
dramatically increase the number and length of detection alarms,
causing the overall degradation of the results. An alternative solu-
tion, which works pretty well in practice, is based on shifting back
the beginning of each detection alarm (once determined) by a small
fixed number of samples further denoted by n0.

3.2. Bidirectional detection

The simplest approach to combining results of forward-time and
backward-time detection is the one based on global decision rules,
such as the intersection rule (∩) or the union rule (∪). In the first
case detection alarm is raised only when the sample is questioned by

both detectors, and in the second case – when it is questioned by at
least one of the detectors. Preliminary tests have shown that neither
of these rules works satisfactorily in practice. The intersection rule is
too conservative – it tends to overlook many small noise pulses and
produces underfitted (too short) detection alarms. The union rule
is too liberal – it yields many overfitted (too long) detection alarms
which, after interpolation, result in audible signal distortions.

To avoid problems mentioned above, different configurations of
forward and backward detection alarms, further referred to as detec-
tion patterns, were divided into several classes and subclasses. Each
class was analyzed separately in order to determine the best way of
combining detection alarms. The final detection decision is a result
of application of a certain number of local, case-dependent decision
rules, called atomic fusion rules, rather than using a single global
rule applicable to all cases.

Detection alarms are sorted out in consecutive analysis frames,
defined as the minimum-length intervals that start and end with r
no-alarm decisions and contain at least one forward or backward de-
tection alarm. Situations where the analysis frame covers at most
one forward detection alarm and at most one backward detection
alarm are referred to as elementary detection patterns. Elementary
patterns were divided into three classes: A – two overlapping de-
tection alarms, B – two non-overlapping detection alarms separated
by less than r samples, and C – one forward or backward detection
alarm. The fourth class D was made up of all complex detection pat-
terns, i.e., those which incorporate more than 2 forward/backward
detection alarms that cannot be subdivided into elementary patterns.

In addition to the union rule and the intersection rule mentioned
above, three “nonstandard” fusion rules were examined: the “front
edge – front edge” rule (FF), the “first edge – last edge” rule (FL),
and the “front edge” rule (F). In the FF case the aggregated detec-
tion alarm starts at the front edge of the forward alarm, and ends
at the front edge of the backward alarm (which, after time reversal,
becomes its back edge). The FF rule is practically motivated – it
is known that the moment of triggering the detection alarm is usu-
ally determined more precisely than the moment of its termination.
Under the FL (compactified union) rule the alarm starts at the first
edge of the forward/backward alarms, and ends at their last edge. Fi-
nally, according to the F rule (applied to class-C patterns only), the
front/back edge sample is “sandwiched” between n0 preceding sam-
ples (added at the preprocessing stage) and n0 succeeding samples.

Fig. 1 summarizes experimental results obtained for all elemen-
tary patterns for 10 test recordings - clean audio signals (chosen so
as to cover different temporal and spectral features of audio signals)
contaminated with the sequence of noise pulses extracted from an
archive gramophone recording. Such an “disturbance transplanta-
tion” technique allows one to check restoration algorithms under re-
alistic conditions. Each test recording was obtained under the sam-
pling rate of fs = 22.05 kHz and contained from 23 to 29 seconds
of the audio material. To enable listening tests focused on a partic-
ular class of detection patterns, test recordings were prepared in a
special way. For example, to compare 3 atomic fusion rules (∪,∩,
FF) associated with the A2 pattern (cf. Fig. 1), 3 variants of each
test recording were created, confined to A2 interventions only – all
other analysis frames were filled with the undistorted audio material.
Since such listening tests are very time-consuming we relied on the
opinion of three experts in the field of sound restoration (experienced
sound engineers). According to them, the best results were obtained
using: the FF rule – for all A-class patterns and all D-class patterns
(not shown in Fig. 1); the FL rule – for all B-class patterns, and the
F rule – for all C-class patterns.
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B2A3 A5

A1

Fig. 1. Atomic fusion rules selected by experts. The plots show the results of forward detection (→), backward detection (←) and bidirectional
detection (↔) for all elementary detection patterns. Shaded areas denote extensions added at the preprocessing stage

3.3. Bidirectional interpolation/smoothing

When the alarm fusion step is finished, i.e., when the forward de-
tection signal d̂f(t) is merged with the backward detection signal
d̂b(t), forming the bidirectional detection signal d̂fb(t), the for-
ward/backward estimation/identification algorithms summarized in
sections 3.1 – 3.4 are run again, this time governed by the external
detection signal d̂fb(t). Denote the resulting signal estimates by
ŝf(t) and ŝb(t). Following [13], the bidirectional signal estimate
ŝfb(t) can be obtained by means of computing convex combina-
tion of the results yielded by the forward-time and backward-time
algorithms:

ŝfb(t) = wf(t)ŝf(t) + wb(t)ŝb(t), t = 1, . . . , N (8)

where wf(t) = σ̂2
nf
(t)/[σ̂2

nf
(t) + σ̂2

nb
(t)] and wb(t) = σ̂2

nb
(t)/

[σ̂2
nf
(t)+ σ̂2

nb
(t)] are the weights that depend on the local predictive

performance of both algorithms. Note that wf(t) + wb(t) = 1, ∀t.

4. EXPERIMENTAL RESULTS

Because of the lack of space, only the results of tests checking the
declicking performance of the proposed algorithm will be reported
here. Validation was based on two sets of recordings – 10 artificial
and 10 authentic.

The artificially generated database was obtained by adding noise
pulses to clean audio signals. The same set of audio recordings was
used as that incorporated for selection of fusion rules, but the im-
pulsive disturbances (606 noise pulses covering 4099 samples) were
extracted from another archive recording. Hence, the performance
of the proposed declicking procedure was checked on a different
data set than that used earlier for training purposes. The proposed
algorithm was run with default settings: r = 6, kmax = 125,
Tmin = 130, Tmax = 600, λ = 0.99, µ = 3.5, n0 = 2. Table
1 shows the results of comparison of 4 approaches to elimination
of impulsive disturbances: the approach based on forward-time pro-
cessing (traditional), the approach based on backward-time process-
ing, the mixture approach of Canazza et al. [13], and the proposed
bidirectional approach. The results of the ordering test show clearly
superiority of the proposed method.

Table 2 shows the analogous results obtained when the proposed
approach, based on local case-dependent alarm fusion rules, is com-
pared with approaches based on two global case-independent rules:
union rule and intersection rule. In this experiment the data base
consisted of 10 real gramophone recordings, covering a wide range
of musical styles, from classical music and opera, to pop and blues.
It is clear from this comparison that the case-dependent rules yield
better results than the case-independent ones.

Table 1. Comparison of declicking algorithms made by 20 test per-
sons. The scores show the number of times where the evaluated al-
gorithm yielded the best results within the analyzed group of record-
ings (more than one recording could be nominated).

Recording Forward Backward Mixed Proposed
1 0 0 0 20
2 0 1 0 20
3 0 0 0 20
4 0 0 0 20
5 1 0 0 20
6 0 1 0 19
7 0 1 0 19
8 0 0 0 20
9 0 0 1 19

10 0 0 0 20

Table 2. Comparison of the results of declicking based on the pro-
posed local case-dependent alarm fusion rules with the analogous
results obtained using the global case-independent rules: union and
intersection (more than one recording could be nominated).

Recording Intersection Union Proposed
1 0 8 17
2 0 2 18
3 0 2 20
4 0 1 20
5 0 12 15
6 0 8 19
7 0 7 17
8 0 14 17
9 0 4 19

10 0 5 17

5. RELATION TO PRIOR WORK
SAR models have so far been used only for processing (coding,
declicking) speech signals [8] – [11]. The reduced-order Kalman-
like restoration algorithm is the first SAR-based procedure capable
of simultaneous reduction of impulsive disturbances and broadband
noise corrupting archived audio signals. The second contribution of
the paper is due to bidirectional processing. To the best of our knowl-
edge, the idea of bidirectional processing was previously exploited
only once, in the paper [13]. The method proposed there is based on
combining restoration results obtained independently by means of
forward-time and backward-time signal processing. Our approach is
different. Based on the results of tests, performed on real audio sig-
nals, corrupted by real impulsive disturbances, we work out a set of
local, case-dependent fusion rules that are further used to combine
forward and backward detection alarms. This results in much better
restored sound quality.
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[4] M. Niedźwiecki, and K. Cisowski, “Adaptive scheme for elim-
ination of broadband noise and impulsive disturbances from
AR and ARMA signals,” IEEE Trans. Signal Process., vol. 44,
pp. 528–537, 1996.
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