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ABSTRACT

This paper addresses the problem of smoothing data with ad-
ditive step discontinuities. The problem formulation is based on
least square polynomial approximation and total variation denoising.
In earlier work, an ADMM algorithm was proposed to minimize a
suitably defined sparsity-promoting cost function. In this paper, an
algorithm is derived using the majorization-minimization optimiza-
tion procedure. The new algorithm converges faster and, unlike the
ADMM algorithm, has no parameters that need to be set. The pro-
posed algorithm is formulated so as to utilize fast solvers for banded
systems for high computational efficiency. This paper also gives op-
timality conditions so that the optimality of a result produced by the
numerical algorithm can be readily validated.

1. INTRODUCTION

The problem of smoothing data with additive step discontinuties
(jumps) was recently addressed in Ref. [15]. This problem arises
in biological and biomedical signal processing, wherein step discon-
tinues may represent either events to be detected, or artifacts to be
removed. As in [15], we assume the noisy data y(n) has the form

y(n) = p(n) + x(n) + w(n), n = 0, . . . , N − 1, (1)

where p(n) is a low-order polynomial of order d � N , x(n) is ap-
proximately piecewise constant, and w(n) is white Gaussian noise.

In the earlier work [15], the estimation of p(n) and x(n) was
based on least square polynomial approximation and total variation
denoising [5, 13]. The problem formulation (PATV) involved the
minimization of a non-differentiable sparsity-promoting cost func-
tion; and an algorithm was derived using the alternating direction
method of multipliers (ADMM) [1, 4, 7, 9]. The method is a suitable
candidate for filtering any data consisting of step discontinuities on
a low-frequency background. In [15], the method was demonstrated
on data produced by a whispering gallery mode biosensor [2, 8].

This paper revisits the PATV problem and presents an improved
algorithm. The new algorithm is derived using the majorization-
minimization (MM) optimization procedure instead of ADMM. The
new algorithm converges faster than the ADMM algorithm, and
unlike the ADMM algorithm, has no parameters that need to be
set. The algorithm is devised so that matrix operations involve only
banded matrices; therefore, fast solvers for banded systems can be
used to achieve very high computational efficiency.

This paper also gives the optimality conditions for the PATV
problem so that the optimality of a result produced by the numerical
algorithm can be readily validated. This condition was not given in
the original paper [15]. In addition, the algorithm below is developed
for a general penalty function, while the derivation in [15] is focused
on the `1 norm. While general penalty functions via reweighted `1
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minimization were described in [15] (based on a nested loop), the
derivation here is simpler and more computationally efficient.

Notation. The N -point signal x is represented by the vector

x = [x(0), . . . , x(N − 1)]T .

The matrices D and S denote the following forms:

D =

 −1 1
−1 1
−1 1
−1 1

 , S :=


0
1
1 1
1 1 1
1 1 1 1


The first-order difference of an N -point signal x is given by Dx
where D has size (N −1)×N . The cumulative sum of an (N −1)-
point signal u is given by Su where S has size N × (N − 1). Note:

DS = I, (2)

i.e., S is a discrete anti-derivative. As operators on vectors, each of
D, DT , S, ST require about N operations.

Let G denote the tall matrix of size N × (d + 1), the columns
of which form an orthonormal basis for polynomials of order d on
{0, . . . , N − 1}. The matrix G satisfies

GTG = I, (3)

and may be obtained1 by orthogonalizing the columns of the tall
Vandermonde matrix, V,

[V]n,k = nk, 0 ≤ n ≤ N − 1, 0 ≤ k ≤ d. (4)

In the following, we will use the MM procedure [10], which
minimizes a convex function F (x), using the iteration

x(k+1) = argmin
x
G(x, x(k)) (5)

where G(x,v) is a convex majorizor of F (x) that coincides with
F (x) at x = v. That is, G(x,v) > F (x) ∀x, and G(v,v) =
F (v). For more details, see Ref. [10] and references therein.

2. POLYNOMIAL APPROXIMATION AND TV DENOISING

In reference to (1), in order to simultaneously estimate p(n) and
x(n), it was proposed in [15] that the polynomial coefficients a and
the signal x be jointly found so as to solve the minimization problem:

(a∗,x∗) = argmin
a,x

1

2

N−1∑
n=0

|y(n)− p(n)− x(n)|2

+

N−1∑
n=1

φ(x(n)− x(n− 1))

(6)

1In MATLAB: G = orth(bsxfun(@power,(0:N-1)’,0:d))
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where p(n) is a polynomial,

p(n) = a0 + a1 n+ · · ·+ ad n
d, (7)

and φ : R→ R is a sparsity-promoting penalty function, such as

φ(u) = λ|u| or φ(u) = (λ/α) log(1 + α|u|). (8)

When φ(u) = λ|u|, then the regularization term in (6) is equal to
λ‖Dx‖1, where ‖·‖1 denotes the `1 norm, the standard convex spar-
sity promoting penalty function [6, 17].

We refer to (6) as the PATV problem. It is defined by {y, d, φ}.
An iterative algorithm is developed below to obtain the optimal a
and x. First, the PATV problem (6) is equivalent to2

(a∗,x∗) = argmin
a,x

1

2
‖y −Ga− x‖22 +

∑
n

φ([Dx]n) (9)

where G is given above. Note that a∗ can be expressed explicitly:

a∗ = GT (y − x). (10)

Note that (10) does not uniquely determine x from a∗ because GT

is a wide matrix.
Substituting (10) into (9), the PATV problem can be written as

x∗ = argmin
x

1

2
‖H(y − x)‖22 +

∑
n

φ([Dx]n) (11)

where H is given by

H := I−GGT . (12)

Algorithm. Note that adding a constant to x∗ does not change the
value of the cost function (11). (The operator D clearly annihilates
constants. Also, as a constant signal is exactly represented as a poly-
nomial of degree zero, H also annihilates constants.) The minimizer
x∗ is unique only upto an additive constant. Therefore, with out loss
of generality, we may write x = Su where S is the cumulative sum
matrix and u is length N − 1. Then using (2), we have

Dx = DSu = u (13)

and the optimization problem in (11) can be written as

u∗ = argmin
u

{
F (u) =

1

2
‖H(y−Su)‖22 +

∑
n

φ(u(n))
}
. (14)

To minimize the cost function we will use the MM procedure. Let
g(u, v) be a quadratic majorizer of φ(u), defined as

g(u, v) =
φ′(v)

2v
u2 + φ(v)− v

2
φ′(v). (15)

See [14] for a derivation and illustration of g(u, v). Then

g(u, v) ≥ φ(u) for all u ∈ R (16)
g(v, v) = φ(v) for v 6= 0. (17)

The majorizor g can be used to obtain a majorizor for F (u) in (14).
If u and v are vectors, then∑

n

g(u(n), v(n)) ≥
∑
n

φ(u(n)) (18)

2In (9), polynomial p is represented using the orthonormal basis G.

with equality if u = v. That is, the left-hand-side of (18) is a ma-
jorizor for

∑
n φ(u(n)). Moreover, the left-hand-side of (18) can be

written compactly as∑
n

g(u(n), v(n)) =
1

2
uTW(v)u + c (19)

where W(v) is a diagonal matrix defined by

[W(v)]n,n =
φ′(v(n))

v(n)
(20)

and
c =

∑
n

φ(v(n))− v

2
φ′(v(n)). (21)

Therefore, using (18), a majorizor for F (u) is given by

G(u,v) =
1

2
‖Hy −HSu‖22 +

1

2
uTW(v)u + c. (22)

G(u,v) is quadratic in u. Hence, minimizing G(u,v) wrt u gives

u = (STHTHS + W(v))−1STHTHy (23)

where W(v) depends on v per (20). Note that HTH = H, so

u = (STHS + W(v))−1STHy. (24)

Therefore, the MM update produces the sequence

u(k+1) = argmin
u

G(u, u(k)) (25)

= (STHS + W(k))−1STHy (26)

where we use the notation W(k) := W(u(k)), i.e.,

[W(k)]n,n =
φ′(u(k)(n))

u(k)(n)
. (27)

There are two problems with (26).

1. The update in (26) requires the solution to a large system of
equations which involving order N2 operations.

2. If components of u(k) go to zero, then the entries of W(k) go
to infinity. Hence, the update equation (26) may become numeri-
cally inaccurate. Moreover, because the solution u is expected to
be sparse, generally some components of u(k) will go to zero.

Both problems are avoided, as described in Ref. [10], by using the
matrix inverse lemma (MIL). Here, we use MIL twice to derive an
efficient and stable implementation of (26). First, write:

STHS + W(k) = ST (I−GGT )S + W(k) (28)

= W(k) + STS− STGGTS (29)

= A(k) −BBT (30)

where we define

A(k) := W(k) + STS, B := STG.

With this notation, by the matrix inverse lemma, we can write

(STHS + W(k))−1 = [A(k)]−1

+ [A(k)]−1B
[
I−BT [A(k)]−1B

]−1

BT [A(k)]−1
(31)
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An efficient implementation of [A(k)]−1 can be obtained as fol-
lows. Use the matrix inverse lemma again to write

[A(k)]−1 = [W(k) + STS]−1 (32)

= [W(k)]−1 − [W(k)]−1
[
(STS)−1 + [W(k)]−1

]−1

[W(k)]−1.

Several observations can be made. We use the notation Λ(k) =
[W(k)]−1. From (27), this is the diagonal matrix given by

[Λ(k)]n,n =
u(k)(n)

φ′(u(k)(n))
. (33)

Note that if φ(u) = λ|u|, then u/φ′(u) = |u|/λ. If φ(u) =
(λ/α) log(1 + α|u|), then u/φ′(u) = |u|(1 + α|u|)/λ.

Note that, as u(k)(n) goes to zero, the value [Λ(k)]n,n does not
go to infinity. Also, importantly, the matrix (STS)−1 is of the form

(STS)−1 =


1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2

 . (34)

In particular, this is a banded matrix. Defining

R(k) = (STS)−1 + Λ(k), (35)

then (32) can be written as

[A(k)]−1 = Λ(k) (I− [R(k)]−1Λ(k)) (36)

where R(k) is a banded matrix. In fact, it is a tridiagonal matrix,
so the operator [R(k)]−1 can be implemented exactly and efficiently
using fast solvers for banded systems [12, Sect 2.4].

The update in (31) also requires the implementation of the oper-
ator [Q(k)]−1 where

Q(k) := I−BT [A(k)]−1B. (37)

However, Q is a small matrix of size (d+ 1)× (d+ 1), where d is
the order of the low-order polynomial p(n). The matrix B is of size
(N − 1) × (d + 1) and need be computed a single time and saved.
At each iteration, the matrix Q(k) must be computed, which can be
done efficiently using the implementation of [A(k)]−1 described in
(36) just above. By the preceding identities, (31) can be written as

(STHS + W(k))−1

= [A(k)]−1 [I + B [Q(k)]−1 BT [A(k)]−1] (38)

and can be implemented as an operator with order Nd operations.
Therefore, the update equation (26) that constitutes the MM al-

gorithm, can be written as

b = STHy (39)

u(k+1) = [A(k)]−1
[
b + B [Q(k)]−1 BT [A(k)]−1b

]
(40)

This is a computationally stable and efficient implementation to
solve problem (14). The algorithm is summarized in Table 1.3

3A MATLAB program implementing the algorithm is available online at
http://eeweb.poly.edu/iselesni/patv/.

Input: y ∈ RN , d, φ

1. b = STHy

2. B = STG

3. u = 1 (initialization)
repeat

4. Λn,n =
u(n)

φ′(u(n))

5. R = (STS)−1 + Λ

6. A−1 = v 7→ Λ(v −R−1Λv)

7. Q = I−BTA−1(B)

8. u = A−1(b + B Q−1BTA−1(b))

until convergence
9. x = Su

10. a = GT (y − x)

output: x, a

Table 1. An MM algorithm for solving the PATV problem. The
algorithm uses fast solvers for banded systems.

Zero-locking. Note that if u(k)(n) = 0 for some index n and some
iteration k, then [Λ(k)]n,n = 0 and therefore u(k+1)(n) = 0. Once
a component of u(k) is zero, then it will be zero in all subsequent
iterations of the algorithm. That is, the zero is ‘locked-in’. This
zero-locking behavior is a well known phenomenon of some classes
of algorithms [10]. To account for this, the initialization should be
entirely non-zero, u(0)(n) 6= 0 for all n. As discussed in [10,11], the
zero-locking behavior does not necessarily impede the convergence
of algorithms in which it occurs. In Table 1, the initialization is
u(0)(n) = 1 for all n, but other initializations can be used. We
have found experimentally, that the algorithm converges reliably, as
illustrated in the example below.

2.1. Optimality Conditions

When the penalty function φ is convex, then the minimizer u∗ of
(14) must satisfy certain conditions, as described in Ref. [3, Prop
1.3]. These conditions can be used to verify the optimality of a solu-
tion produced by a numerical algorithm.

Suppose φ is convex. If u solves (14), then u must satisfy:

[STHTH(y − Su)]n ∈ ∂φ(u(n)), ∀n (41)

where [v]n denotes the n-th component of the vector v and ∂φ(·)
is the subdifferential, a set-valued generalization of the derivative.
Using HTH = H, x = Su, and u = Dx, we may write

[STH(y − x)]n ∈ ∂φ([Dx]n), ∀n. (42)

With φ(u) = λ|u|, condition (42) is given by[
STH(y − x)

]
n
= λ, u(n) > 0

−λ ≤
[
STH(y − x)

]
n
≤ λ, u(n) = 0[

STH(y − x)
]
n
= −λ, u(n) < 0

(43)

as illustrated in Fig. 1 below.
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Fig. 1. Example: Polynomial approximation of noisy data with an
additive step discontinuity. The penalty function is φ(u) = λ|u|.

2.2. Example

To illustrate the PATV (polynomial approximation / total variation
denoising) problem and its solution, we consider the data illustrated
in Fig. 1, consisting of a second order polynomial, an additive step
discontinuity, and white Gaussian noise (σ = 0.25). With d = 2,
φ(u) = λ|u|, and λ = 1.5, the result of the PATV algorithm is illus-
trated in Fig. 1. The figure also illustrates the cost function history
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Fig. 2. Example as in Fig. 1. Here, the penalty function is non-
convex, φ(u) = (λ/α) log(1 + α|u|) with λ = 1.5, α = 1.0.

F (u(k)) of both the proposed MM algorithm and of the ADMM
algorithm [15]. The MM algorithm converges substantially faster.
Moreover, the ADMM algorithm requires two parameters (µi) that
must be carefully set so as to avoid slow convergence. The proposed
MM algorithm requires no user specified parameter.

The convergence of the MM algorithm is further illustrated by
showing the value u(k)(n) for each index n for 100 iterations. In
this example, u(0)(n) = 1 for all n. It can be seen that many u(n)
rapidly converge to zero. In addition, the optimality of the obtained
solution is validated in the scatter plot of STH(y − x) versus Dx.
According to (42), the solution is optimal if the points in the scatter
plot lie on the dashed lines.

Now, we set the penalty to φ(u) = (λ/α) log(1 + α|u|) with
λ = 1.5, α = 1.0. This non-convex function promotes sparsity
more strongly than the `1 norm. The PATV algorithm produces the
result shown in Fig. 2. In this solution, u∗ has only a single non-zero
value, consistent with the simulated data. Although φ is not convex,
the scatter plot of STH(y − x) versus Dx lies on φ′(u) indicated
by the dashed lines.

3. CONCLUSION

This paper revisits the polynomial approximation / total variation
denoising (PATV) problem formulated in [15]. A new algorithm is
derived with faster convergence and without the need of user sup-
plied parameters. The algorithm developed here is for a general
penalty function φ; therefore non-convex penalty functions can be
more readily and efficiently used to obtain enhanced sparsity, in
comparison with [15]. This paper also gives the optimality condi-
tions for the PATV problem, not given in [15], by which optimal-
ity/convergence can be readily validated. Recently, in [16], low-pass
filtering is used in place of polynomial approximation.
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