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ABSTRACT

This paper proposes a likelihood constrained optimization frame-
work for Poisson image restoration. The likelihood constrained
problem considered in this paper is the minimization of convex
priors over the level set of the negative-log-likelihood function of
the Poisson distribution. It has advantages in parameter selection
compared with the minimization of the weighted sum of convex
priors and the negative-log-likelihood function, which has been used
in conventional methods. The level set is characterized as the fixed
point set of a certain quasi-nonexpansive operator, which enables us
to apply the hybrid steepest descent method to solve the constrained
problem. The proposed framework not only can handle the level
set of any convex function whose subgradient is available but also
does not require any computationally-expensive procedure such as
operator inversion and inner loop. Illustrative numerical examples
are also presented.

Index Terms— Poisson image restoration, likelihood con-
strained optimization, fixed point set characterization, hybrid steep-
est descent method

1. INTRODUCTION

Image restoration from observations contaminated by Poisson noise
is a longstanding problem in various applications from astronomical
imaging to medical imaging. State-of-the-art methods for Poisson
image restoration, e.g., [1, 2, 3, 4, 5], are based on the minimization
of the weighted sum of convex priors and the negative-log-likelihood
function of the Poisson distribution, where the convex priors pro-
mote some desired property based on a-priori knowledge on the un-
known original image, and the negative-log-likelihood function, of-
ten called the generalized Kullback-Leibler (G-KL) divergence [5],
plays a role of the data-fidelity. We refer to this formulation as the
unconstrained problem. One of the main reasons why these studies
adopted the unconstrained problem is that the proximity operator of
the G-KL divergence is available, resulting in an efficient resolution
of the unconstrained problem via convex optimization algorithms of
using proximal approaches. Indeed, the Douglas-Rachford splitting
method [6] and the alternating direction method of multipliers [7]
have been used for solving the unconstrained problem in the exist-
ing methods.

Another possible formulation for Poisson image restoration is
the minimization of convex priors over the lower level set of the G-
KL divergence, i.e., the upper level set of the likelihood function
(possibly with other constraints). We refer to this formulation as
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the constrained problem. The constrained problem has some advan-
tages compared with the unconstrained problem in parameter selec-
tion. In the unconstrained problem, we need a careful tuning of the
weight that determines the relative importance between the G-KL
divergence and the convex priors, in order to obtain a reasonable
result. However, this is quite difficult because the connection be-
tween their values is totally unclear. On the other hand, in the con-
strained problem, what we have to select is the level of the G-KL
divergence, and it has much clearer meaning than the weight in the
unconstrained problem. This is because the level of the G-KL diver-
gence directly represents the likelihood. In other words, solving the
constrained problem is equivalent to promoting some desired prop-
erty based on a-priori knowledge while keeping the likelihood at a
certain level. This is quite intuitive, and we can easily utilize some
information/criteria to adjust the level of the G-KL divergence inde-
pendent of the sort of convex priors. However, because of the com-
putational difficulty of the projection onto the level set of the G-KL
divergence, convex optimization algorithms of using proximal ap-
proaches [6, 7, 8, 9, 10] cannot be directly applied to the constrained
problem. It should be remarked that there have been proposed sev-
eral studies that consider to handle the level set of the G-KL diver-
gence via proximal approaches [11, 12, 13]. We will discuss in detail
how our work relates to these prior work in Section 5.

In this paper, we propose an optimization framework for Pois-
son image restoration based on the constrained problem. We first
give an explicit formulation of the constrained problem where mul-
tiple convex priors can be treated together with the level set of the
G-KL divergence so as to accept various problem design for effec-
tive restoration. Second, the level set is exactly characterized as the
fixed point set of a newly introduced quasi-nonexpansive operator
inspired by the subgradient projection. It leads to an equivalent ex-
pression of the constrained problem, that is, the minimization of the
convex priors over the intersection of the fixed point sets of certain
quasi-nonexpansive operators. Third, we reformulate it in a certain
product space in order to circumvent the computational difficulty
due to the composition of degradation operators (e.g., blur). Finally,
we present an efficient algorithmic solution to the reformulated con-
strained problem via the hybrid steepest descent method [14, 15, 16],
which is free from computationally expensive procedures such as op-
erator inversion and inner iteration.

2. POISSON OBSERVATION MODEL
Throughout the paper, let R, R and N denote the sets of all real,
nonnegative real numbers, and nonnegative integers, respectively.

Consider the following Poisson observation model:

v =Dp(P0), (1)
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where @ € RY (N € N is the number of pixels) is the unknown
original image, ® : RY — R a linear degradation operator such
that @t € RY, Dp a Poisson noise contamination process, and
v = [v1,...,vm]" € N an observation ((-)* stands for the trans-
position). In this model, v is assumed to be a sample of M (< N)
dimensional independent Poisson random vector V with the follow-
ing probability distribution:

M (aX;)vi
PV =y = [T [0 en-ar)| . @
i=1 v

where A = [A1,..., )" = &4 € RY, and a € (0,00) is a
scaling parameter which determines the noise intensity. The negative
log-likelihood function is derived as

M
—InP(V=v|A) = Z [—vilnad; + Invi! + aX].  (3)

i=1
Taking into account the case that v; = 0 and the constant Inv;!, a

data-fidelity function Dy o € I'o (RM )1 for the Poisson noise con-
tamination (2) is obtained as follows:

Dy o ‘RM (—00, 0]

v |axi—vilnazx;, ifv; >0andz; >0,
ZX'—}Z ax;, ifv,=0andz; >0, (4)
i=1 | 0o,

otherwise,

which is the so-called generalized Kullback-Leibler (G-KL) diver-
gence [5]. We will use the subdifferential® of the G-KL divergence
0Dy o given by

ODy o : RM — 2*"

a— 2% if v; > 0and z; > 0,

a, if v; = 0and z; > 0,
DX . (5)
—o00,q], ifv;=0andz; =0,
a, otherwise.

A selection of the subgradient of Dy« atx is denoted by Dy, ,(x) €
0Dy o (x).
3. PROPOSED METHOD
3.1. Problem Formulation
Define the level set of the G-KL divergence for the level p € R as
leve, Dy, := {x € RY| Dy.a(x) < p}, (©6)

which plays a role of the data-fidelity (i.e., likelihood) constraint.
Then the constrained problem for Poisson image restoration based
on the observation model (1) is formulated as follows.

Let H be a real Hilbert space equipped with the standard inner prod-
uct (-, -) and its induced norm || - ||. A function f : H — (—o0,00] is
called proper lower semicontinuous convex if dom(f) := {x € H| f(x) <
oo} # 0, leve o (f) := {x € H| f(x) < a} is closed for every a € R,
and f(Ax + (1 — N)y) < Af(x) + (1 — X) f(y) forevery x,y € H and
A € (0, 1), respectively. The set of all proper lower semicontinuous convex
functions on H is denoted by I'o ().

2Let f : H — (—o0, 00] be proper. The subdifferential of f is Of :
H—2" x> {geH (VyeH) (y—x8) +f(x) < f(¥)}
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Problem 3.1 (Likelihood constrained problem).

K

> 7 fe(Mu), @)

k=1

Find u* € arg min
ueCass
@ucleve, Dy o

where
Cass = {x € RN| z; €[0,255) fori =1,...,N}, (8)

is a numerical constraint for eight-bit grayscale images, My
RY — My (k = 1,...,K) are bounded linear operators (M,
(k = 1,..., K) are finite dimensional real Hilbert spaces), fr €
To(My) (k = 1,..., K) (possibly nonsmooth) convex functions
whose proximity operators® are available, and ¥ fy, (k = 1,..., K)
their Moreau envelope*.

Remark 3.1 (Note on Problem 3.1).

e Each function fi(My-) is designed based on a-priori knowl-
edge on the unknown original image G. Useful examples of
fx(My-) are the £' norm of some tight frame and the to-
tal variation [18]. In the former case, fj corresponds the
¢* norm and M, the tight frame. In the latter case, fj :
RY x RY — Ry @ (x,y) — > Z?ﬁl Tij + Yij
and My, : RN — RY x RY : x — (D,x, Dyx), where
D,, Dy, are vertical and horizontal discrete gradient opera-
tors, and n, X np the image size (ny,n, = N). Note that
Problem 3.1 can incorporate multiple convex priors together,
so that it accepts various design of the objective function.

e If we choose a sufficiently small v (e.g., v < 0.001), the ef-
ficacy of 7 fj, is almost same as the original nonsmooth func-
tion f, as stated in [16] (this is also confirmed by the exper-
imental results in Section 4).

3.2. Fixed Point Characterization

To make Problem 3.1 tractable, as the first step, we characterize
lev<, Dy« as the fixed point set® of the following operator:
Tk = Tsppy,,. © Poy,, (11)
where
L, ifx; < Landwv; >0,
0, ifx; <0andv; =0,
U, ifxz;,>U,
x;, otherwise

PCE : R]w — C]‘é LT (12)

3For any v € (0,00), the proximity operator of index y of f € T'o(H)
is defined by

1
prox,; :H > Hix— arg}rlréi% {f(y) + %HX—yHZ}, )

4Bvery f € T'o(H) can be approximated with any accuracy by a differ-
entiable convex function:

7509 = mig { 1)+ - - vIB (10)

which is called the Moreau envelope [17, 16] of index v € (0, 00) of f, and
its gradient V7 f(x) = w is %-Lipschitzian, ie., [V f(x) —
Vfiy)l < %Hx — y||. In addition, the chain rule yields V(7 f o M) =
M* o (V7 f) o M, where (-)* stands for the adjoint.

SThe fixed point set of an operator 7' : H — H is defined by Fix(7") :=
{x e H| T(x) = x}.



is the projection onto

v M| z;e[L,U], if v;>0
CB T {X €R z;€[0,U], if U,,',:O} ’ (13)
TSpDv,a : C}‘é — ]RJM :
_ Dvia(x)=p 1y .
s 4% T DLn oz Pva(), i Dvalx) > p, (14)
X, otherwise,
a variant of the so-called subgradient projection, || - || the £% norm,

and L,U € (0, 0o). The operator Tspp,, ,, is well-defined on C% C
domDy , = {x € ]RM\ Dy.o < oo}. Concatenating Tspp,,
and PCE as (11), the obtained operator 7.1 is well-defined over
RM . Moreover, by choosing sufficiently small L and large U, the
set C'p includes lev<,Dy q, ie., lev<,Dy o N CE = lev<,Dy q.
Indeed, in the case that the observation v is an eight-bit image, we
see that L = 1 and U = 255 satisfy the condition. This is because,
in such a case, if v; > 0 then the corresponding x; is same/lager
than 1 due to that the distribution (2) ensures x; > 0, and each pixel
of an eight-bit image takes a nonnegative integer.

Proposition 3.1. Assume that lev<, Dy o N Pcy, # (. Then the
operator Tg gy Is attracting quasi-nonexpansive with Fix(Tg.gr) =
lev<,Dy,a N PCE’ ie, for x € RM \ Fix(Tg.xr) and y €
Fix(Tg.k1),

ITe-kL(x) = yll2 < [x =yl

By Proposition 3.1, we can rewrite Problem 3.1 into the follow-
ing problem:

K
Find u* € arg min 7 fr(Mgu), (15)
ueFix(Pc, ;) ;
PucFix(15.k1)
where Pc, is the projection onto Cas5 given by
0, if x; <0,
Poyy :RY 5 RY iz {zy, if0<z <255  (16)
255, if z; > 255,

and FiX(PCQSS) = 0255.

3.3. Reformulation on Product Space

The problem (15) is still not manageable because of the composi-
tion of ®. To resolve this difficulty, we further reformulate it in the
product space X := RY x RM equipped with the inner product
{(u,9), (W, 9))x := u'u’ + 9" for (u,d), (u',9') € X and
its induced norm || - || x. Define

Tx : X = X (0,9) = (Pogss (u), TokL(9)) - (17)

Then, by Proposition 3.1 and the firm nonexpansivity® of P, we
see that Ty is attracting quasi-nonexpansive with

Fix(Tx) = Fix(Poys;) X Fix(TgkL)- (18)

A operator T is called nonexpansive if, for every x,y € H,
IT7x) - T < lIx =yl
In addition, 7" is called firmly nonexpansive if 2T — I is nonexpansive (I

denotes the identity operator). Note that the firm nonexpansivity implies the
attracting quasi-nonexpansivity.
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Incidentally, by letting ¥ (u, 9) := 1|/ ®u — 9||3, we have

{(u,®u) € X|u e R} =arg min ¥(u,d)
(u,9)ex

= Fix(I — uVV), (19)
and Fact 17.5 in [16] generates
I —pV¥): X = X
(W, 9) = (0,9) — (@' Pu— 29,9 — du), (20

which is nonexpansive if we use p € (0, %) for a Lipschitz constant
& € (0,00), e.g., |A]|2,, where A := [& — Ip;] € RM*M+N),
I the M x M identity matrix, and || - ||op the operator norm. By
(18), (19), and Proposition 4.35 of [19], we see that

u € Fix(Pcy;;) and Pu € Fix(Tgk1)
& (u,9) € Fix((I — pV¥) o Tw). @1
Proposition 3.2. Let U be a finite dimensional real Hilbert space
equipped with the standard inner product (-, -) and its induced norm
|-, R : U — U a nonexpansive operator, T : U — U an
attracting quasi-nonexpansive operator, and >(Fix(R o T),r) :=
{x € H| inf _Fix(pory X — ¥Il = 7}. Assume that Fix(R o T))
is nonempty, bounded, and closed. Then R o T is quasi-shrinking
with Fix(R o T) on any bounded closed convex set E such that
Fix(RoT) CE, ie.,

K:rel0,00)+—

inf"@(Fix(RoT)w)ﬁE { infyeFiX(RoT) lx -yl

- infyeFix(RoT) [RoT(x) -yl }7

if > (Fix(RoT),7r)NE # 0,

00, otherwise.
satisfies K(r) =0<r =0.

By the attracting quasi-nonexpansivity of Tix with Fix(Tx ), the
nonexpansivity of (I — uV¥), and Proposition 3.2, we see that the
operator (I — uVW) o T is quasi-shrinking with Fix((I — pV¥) o
Tx) on any bounded closed convex set including it. Note that the
boundedness and closedness of Fix((I — pV¥) o Tx) immediately
follow from those of C255 and lev<, Dy o N Pcé. Finally, the prob-
lem (15) (i.e., Problem 3.1) is reformulated as follows:

Find (u*,9") € Q
= arg min

. F(u,9),
(u,9)eFIX((I—pV¥)oTy)

(22)

where F(u,9) := 31, 7 fu(Myu).

3.4. Algorithm

We solve the problem (22) via the hybrid steepest descent method
[14, 16]. The hybrid steepest descent method can minimize a differ-
entiable convex function over the fixed point set of a quasi-shrinking
operator. Obviously, the problem (22) is a special case of such a
formulation, so that an algorithmic solution to (22) via the hybrid
steepest descent method is obtained as follows:

(T 9FY = (] — V) o T (u™ 9™

— YR ((1 V) o Tx(u(k),ﬂ(k))> , 23)



/‘

(a) Original.

(b) Degraded.
PSNR=21.09 dB
SSIM=0.4702

(c) Existing method.  (d) Proposed method.
PSNR=30.80 dB PSNR=31.10 dB
SSIM=0.8849 SSIM=0.8990

Fig. 1. The resulting images: Our estimate (d) is as well-restored as (c) obtained by solving (25) which uses the hand-optimized w.

where V F' is the gradient of F' given by

VF: X = X:(u0,9) — (ZM;o(v”fk)oMk(u),o> )

k=1

which is Lipschitzian, and (t(k) )e>1 C Ry aslowly decreasing non-
negative sequence satisfying limy_, o t®) = 0 and D1 R =
oo. It is confirmed from (12), (14), and (20) that T'x and V¥ can be
easily computed. Also, V F' is available as long as the proximity op-
erator of fi, (k = 1,..., K) are. Theorem 5 of [15] guarantees that
the sequence (u(k), 19(]“)) k>0 generated by (23) reaches the solution
set of the problem (22), i.e.,

li i ®) 9"y — (u*,9%)|x =0. (24
kggo(u*%lgeﬂll(u ) — (0, 9)lx =0 (24

4. NUMERICAL EXAMPLES

We examined the proposed method on Poisson image deblurring.
This kind of situation is often appeared in the context of photon-
limited applications, for example, astronomical image restoration.
In our experiment, an astronomical image ‘Saturn’ whose size is
ny X np, = 256 x 256 (N = 65,536) was blurred by 5 x 5
uniform-blur and then contaminated by a Poisson noise with scaling
parameter o = 0.2. For the convex priors, we simply used the total
variation, i.e., K = 1 (see also Remark 3.1). In this case, the prox-
imity operator of f; is given by a generalized soft-thresholding (see,
e.g., Example II1.3 of [5]). The parameter ~y of the Moreau envelope
was set to 0.001. The level of the G-KL divergence p was adjusted
to Dy, (®@11). We compare our results with the results obtained by
solving the unconstrained problem [1, 2, 3, 4], i.e., the minimization
of the weighted sum of the total variation and the G-KL divergence:

find u* € arg g1cin {wfi(Miu) + Dy o (Pu)}, (25)
u 255

where w € (0,00). Note that, even in the experimental setting
where the original image 1 is known, a suitable value of the weight
cannot be determined easily. The parameters (u, t(’”) are set to (0.2,

k=3 ). The unconstrained problem is solved by the primal-dual split-
ting algorithm [10]".

The resulting images are shown in Fig. 1. We see that our esti-
mate (d) is close (even a little better in the sense of PSNR and SSIM
[20]) to the estimate (c) obtained by solving the unconstrained prob-
lem that uses a hand-optimized weight. This implies that the pro-
posed likelihood constrained optimization is more favorable in pa-
rameter selection than the unconstrained one; the Moreau envelope
of the total variation used in the proposed method is as effective as
the original nonsmooth one.

"Basically, what algorithm we use for solving (25) does not significantly
affect the recovery performance.
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5. CONCLUDING REMARKS

We have presented a likelihood constrained optimization framework
for Poisson image restoration. The level set of the G-KL diver-
gence is characterized as the fixed point set of an attracting quasi-
nonexpansive operator inspired by the subgradient projection, and
reformulated the constrained problem in a product space to circum-
vent the difficulty of the computation caused by matrix composition.
The reformulated constrained problem is efficiently solved by the
hybrid steepest descent method. Numerical examples have shown
that the proposed method is effective for the deblurring of images
contaminated by Poisson noise.

We briefly discuss how our main contributions are related to
prior work. The proposed Poisson image restoration based on the
constrained problem (7) is an advanced method in the sense of the
parameter setting compared with unconstrained approaches [1, 2,
3, 4, 5]. Use of the likelihood constraint in Poisson noise con-
tamination scenario was first considered by Chierchia et al. [11],
where they employed an outer approximation of the constraint via
certain multiple hyper planes. Carlavan et al. [12] and Teuber et
al. [13] also adopted the likelihood constraint where the projection
onto it is substituted by the proximity operator of the G-KL diver-
gence with appropriate y obtained by solving a certain discrepancy
equation. Such + varies based on the input, so that their algorithms
have to calculate « using Newton’s method in each iteration, result-
ing in inner loop. Compared with them, our proposed optimization
scheme can solve the likelihood constrained problem (7) without us-
ing any approximation related to the constraint, as well as it does
not require computationally-expensive procedures such as operator
inversion and inner loop. We should also mention the generalized
Haugazeau’s algorithm [21], which was developed for minimizing
strictly convex functions over the fixed point set of a certain quasi-
nonexpansive operator and applied to a constrained total-variation-
based image restoration [22]. This algorithm can also be applied to
the likelihood constrained problem if the objective function is strictly
convex. On the other hand, out proposed optimization scheme ad-
mits non-strict convex objective function, which implies its wider
applicability than the generalized Haugazeu’s algorithm. In addi-
tion, the proposed formulation (7) allows us to adopt a variety of
prior design with Moreau envelope relaxation, such as multiple pri-
ors [23, 5] and more elaborated priors [24, 25, 26, 27].

We finally remark that the proposed method can handle the level
set of any function whose subgradient is available. This is because
the key principle of the proposed method in Proposition 3.1 is not
based on any specific property of the G-KL divergence. Hence, there
are many other possible applications, for example, restoration from
Poisson-Gaussian mixture [28] and multiplicative noise contamina-
tion [29, 30] based on suitable likelihood constraints.
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