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Ulugbek S. Kamilov, Aurélien Bourquard, Emrah Bostan, and Michael Unser

Biomedical Imaging Group, EPFL, Switzerland

ABSTRACT
In this paper, we reconstruct signals from underdetermined
linear measurements where the componentwise gains of the
measurement system are unknown a priori. The reconstruc-
tion is performed through an adaptation of the message-
passing algorithm called adaptive GAMP that enables joint
gain calibration and signal estimation. To evaluate our ap-
proach, we apply it to the problem of sparse recovery and
compare it against an `1-based approach. We numerically
show that adaptive GAMP yields excellent results even for a
moderate amount of data. It approaches the performance of
oracle GAMP where the gains are perfectly known asymptot-
ically.

Index Terms— Sparsity, inverse problems, approximate
message passing, blind learning, MRI

1. INTRODUCTION

We consider a linear model where an unknown signal x ∈ CN

is represented by measurements

y = FSx + w. (1)

The matrix F ∈ CM×N with M ≤ N , which models the
effect of the measurement system, is assumed to be known.
The unknown component of the system is a diagonal matrix
S ∈ RN×N

+ that contains a series of gains applied to x. The
vector w ∈ CM represents complex additive white Gaussian
noise (AWGN).

In this work, our task is to jointly estimate S and x. In
particular, we are interested in a blind calibration scenario [1]
where, given L measurement vectors assembled in the matrix
Y = [y1 · · ·yL], we estimate the gains S while simultane-
ously recovering the unknown signals X = [x1 · · ·xL]. This
joint estimation problem arises in several applications. In par-
allel MRI, for instance, the matrix F represents a Fourier en-
coding, while S corresponds to the sensitivity profile associ-
ated to a receiver coil [2]. Another potential application is
ptychographic nanotomography [3], which involves Fourier
measurements and a constant illumination profile that can be
modeled by a diagonal positive-semidefinite matrix.
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Fig. 1. Joint estimation problem considered in this work.

Although the joint recovery of the signals X and the gain
matrix S can be formulated as a variational problem, we
concentrate on the alternative approach based on message-
passing algorithms [4–6]. The major advantage of these
algorithms are their generality, low computational cost, and
reconstruction performance. In particular, generalized ap-
proximate message passing (GAMP) was shown to success-
fully solve (1) when the problem is formulated in Bayesian
terms under the assumption that S as well as the signal and
noise distributions are perfectly known [6]. Recently, a gener-
alized version of GAMP called adaptive GAMP was proposed
for solving inverse problems where the signal and noise dis-
tributions have parametric uncertainties [7]. Adaptive GAMP
generalizes several prior works [8, 9], and provably yields
asymptotically consistent estimates of the unknown param-
eters. In the following, we demonstrate that the adaptive
GAMP framework can be extended in order to solve (1). This
makes it potentially applicable to a large class of calibration
problems arising in several applications.

2. BAYESIAN FORMULATION

We start by introducing the Bayesian formulation of the esti-
mation problem illustrated in Figure 1. The input signal x is
random with a separable distribution

px(x; λ) =
N∏

i=1

px(xi; λ), (2)

where λ represents the parameters of the prior. The noiseless
measurement vector z = y − w is obtained via z = FSx.
Each component zi is then corrupted by complex i.i.d. Gaus-
sian noise wi ∼ CN (0, vw) to yield the vector of measure-
ments y. Note that, in practice, the noise variance vw as well
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as the parameters of the prior λ are unknown and must be
estimated from the data.

The conditional probability distribution of the signal x
given the measurements y is given by

px|y(x|y) ∝ py|x(y|x)px(x)

∝
M∏
i=1

G(yi − zi; vw)
N∏

j=1

px(xj ; λ), (3)

where ∝ denotes identity after normalization to unity and G
is the Gaussian distribution

G(x− µ; vw) =
1

(
√

2π(vw/2))2
e−
|x−µ|2
2(vw/2) , (4)

where x, µ ∈ C. The distribution px|y in (3) implicitly de-
pends on S, λ, and vw. When all the parameters are known,
it provides a complete statistical characterization of the prob-
lem. In particular, the MAP and MMSE estimators of x are
specified by

x̂MAP = argmax
x∈CN

{
px|y(x|y)

}
, (5a)

x̂MMSE = E [x | y] . (5b)

In the sequel, we develop computational approximations to
these estimators that also allow to recover S.

3. JOINT VARIATIONAL ESTIMATION

To estimate the unknowns, we first propose a variational
approach based on the MAP estimator (5a). Assuming a
Laplace-type prior on each signal xl, the solution is derived
as the minimum of a cost functional that involves `1-type reg-
ularization. The Laplace prior has been extensively studied
as a model of signal sparsity and applied to several types of
problems such as compressed sensing [10, 11]. In the case of
our model (1), the recovered quantities are expressed as

{X̂, Ŝ} = argmin
X,S

{
L∑

l=1

‖FSxl − yl‖22 + τ‖xl‖1

}
s.t. Tr(S) = N, S ∈ RN×N

+ . (6)

Unless already known, the gains S are to be jointly esti-
mated with the signals X. In our algorithm, we thus proceed
through alternate optimizations, keeping either quantity fixed
in each step. According to our formulation, each update of
X̂ amounts to solving a linear program (for which excellent
convex-optimization approaches are available and described
in the literature [12]), while each gain estimation corresponds
to the minimization of a penalized-least-squares-type expres-
sion. The trace condition appearing in (6) guarantees the
well posedness of the problem and avoids possible scaling
ambiguities between S and each xl.

Note that a similar `1-based approach has been proposed
and applied to joint calibration and to the recovery of sparse
signals by Gribonval et al. [1]. Their work, however, ad-
dresses a distinct problem where S and F act on the unknowns
in reverse order. At any rate, our main point in this section is
to specify a reference method against which to compare our
new message-passing algorithm.

4. CALIBRATION WITH ADAPTIVE GAMP

The GAMP algorithm developed in [6] is an iterative ap-
proach to efficiently approximate the MMSE estimator (5b).
The algorithm relies on the Central Limit Theorem to simplify
loopy belief propagation by replacing continuous-domain
convolutions with matrix-vector multiplications followed by
pointwise nonlinearities [6,13]. Although the basic GAMP al-
gorithm requires perfect knowledge of S, λ, and vw for recon-
struction, it was recently extended to incorporate parameter
learning [7–9]. In particular, a recently introduced adaptive
GAMP method combines maximum-likelihood (ML) estima-
tion with the standard GAMP updates [7]. Adaptive GAMP
was shown to yield consistent parameter estimates asymptot-
ically, which corroborates the performance of reconstruction
that is addressed in Section 5. Details and complete analysis
of adaptive GAMP can be found in [7]. Here, we present the
algorithm applied to the specific problem of blind learning
from L available measurement vectors.

Given the measurements Y ∈ CM×L, the measurement
matrix F ∈ CM×N , and the initial values λ̂0, v̂0

w, and Ŝ0, the
proposed adaptive GAMP-based calibration is given next.

1. Initialization: Set t = 0 and evaluate

X̂0 = E [X] ,V0
x = var [X] ,U0 = 0, (7)

where the expected value and variance are with respect
to px(x) in (2).

2. Measurement Update: First, compute the linear step

Vt+1
p = |F � F||Ŝt|2Vt

x, (8a)

Pt+1 = FŜtX̂t −Vt+1
p �Ut, (8b)

where the modulus operator | · | is applied component-
wise and� denotes the Hadamard (pointwise) product.
Then, estimate the AWGN variance v̂t+1

w by solving

v̂t+1
w = argmax

vw∈R+

{
L∑

l=1

log (py(yl|vw))

}
, (9)

where

py(y|vw) =
N∏

i=1

G(yi − pt+1
i ; vt+1

pi + vw). (10)
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Finally, evaluate the nonlinear step

Ut+1 = F1(Y,Pt+1,Vt+1
p ), (11a)

Vt+1
u = F2(Y,Pt+1,Vt+1

p ), (11b)

where the scalar functions F1 and F2 are applied com-
ponentwise and given by

F1(y, p, vp) =
1
vp

(E [z | y]− p),

F2(y, p, vp) =
1
vp

(
1− var[z | y]

vp

)
.

The expected value and variance implicitly depend on
v̂t+1

w and are evaluated with respect to z ∼ CN (p, vp).

3. Estimation Update: First, compute the linear step

Vt+1
r =

(
|F� F|∗Vu

)−1
, (12a)

Rt+1 = X̂t + Vt+1
r �

(
F∗Ut+1

)
, (12b)

where the inversion is componentwise and F∗ denotes
the Hermitian transpose of F. Then, estimate λ and S
by solving{

Ŝt+1, λ̂t+1
}

= argmax
S,λ

{
L
(
Rt+1|S,λ

)}
s.t. Tr(S) = N, S ∈ RN×N

+ , (13a)

where the log-likelihood function L is given by

L
(
Rt+1|S,λ

)
=

L∑
l=1

N∑
j=1

log
(
pr(rt+1

lj |sjj ,λ)
)
.

The likelihood function is given by pr(r|s,λ) ∝
E [G(r − sx; vr)], where the expectation is with re-
spect to px(x; λ). Finally, evaluate the nonlinear steps

X̂t+1 = G1

(
Rt+1,Vt+1

r

)
, (14a)

Vt+1
x = G2

(
Rt+1,Vt+1

r

)
, (14b)

where the scalar functions G1 and G2 are applied com-
ponentwise and given by

G1(r, vr) = E [x | r] ,
G2(r, vr) = var [x | r] .

The expected value and the variance are evaluated with
respect to px|r(x|r) ∝ G(r − sx; vr)px(x; λ). This
is an AWGN denoising problem with gain s and noise
n ∼ CN (0, vr).

4. Iterate: Set t← t+ 1 and proceed to Step 2.

For each iteration t = 0, 1, 2, . . . , the proposed update rules
produce the estimates X̂t and Ŝt of the collection X of true
signals and diagonal matrix S of gains, respectively. Thus,
the algorithm reduces the intractable estimation problem that
involves high-dimensional integration to a sequence of simple
operations that can be evaluated numerically in an efficient
way.
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Fig. 2. Reconstruction of sparse signals from undercomplete
Fourier measurements. The average reconstruction SNR is
plotted against the number of training signals L.

5. EXPERIMENTS

Applications such as MRI suggest that there is considerable
value in solving estimation problems of the form (1) in the
context of Fourier measurements F with sparse priors. Al-
though estimators based on `1-regularization in some suitable
transform domain offer a good reconstruction performance,
there is often a large performance gap between `1-based ap-
proaches and MMSE estimation [14].

We consider a simple simulation that illustrates how the
use of calibration with adaptive GAMP presented in Section 4
outperforms the `1-approach of Section 3. Specifically, we
evaluate the performance of our adaptive-GAMP-based cali-
bration for estimating sparse signals from noisy Fourier mea-
surements. We perform 100 random trials where we generate
signals of length N = 100 with ρ = 0.2 fraction of nonzero
components drawn from a zero-mean normal distribution of
variance vx = 5. The undersampling ratio is β = M/N =
0.8 and the noise is AWGN of variance vw = 0.01.

The reconstruction performance of both `1 and GAMP-
based approaches is compared in terms of signal-to-noise ra-
tio (SNR) of the whole signal stack. The results are shown
in Figure 2 as a function of the number L of available sig-
nals. Uncalibrated GAMP corresponds to the standard adap-
tive GAMP that learns ρ, vx, and vw, but does not account for
S. The slight 0.1 dB increase in its performance for higher
L is due to improved estimation of these parameters. Cali-
brated `1 uses the approach in (6) to estimate the signals and
recover S. It yields about 2 dB improvement over uncali-
brated GAMP and significantly improves (up to 1.5 dB) its
own performance when L increases. For the `1-method, the
parameter τ was optimized for best MSE performance; this
oracle-aided performance would not be achievable in prac-
tice. Oracle GAMP corresponds to the basic GAMP algo-
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rithm where all parameters, including S, are known. It repre-
sents the best achievable GAMP performance. Finally, cali-
brated GAMP attempts to recover all the unknown parameters
simultaneously from the data Y, as described in Section 4.
The results show that it rapidly approaches the performance
of oracle GAMP and outperforms both uncalibrated GAMP
and calibrated `1 for most L.

6. CONCLUSIONS

We have derived an algorithm based on adaptive GAMP that
reconstructs signals and simultaneously calibrates the corre-
sponding forward model. The proposed method has been
compared to the state of the art through numerical experi-
ments, and the results have shown our calibration approach to
yield promising results—starting from moderate amounts of
signals—while converging to the oracle performance asymp-
totically. In specific applications where the parameters to cal-
ibrate follow a prior statistical distribution, the potential re-
construction performance would be likely to further improve.
This issue is worth addressing in subsequent investigations.

7. RELATION TO PRIOR WORK

The work presented here focuses on a blind calibration sce-
nario. Previously, a distinct calibration setting involving ad-
ditive uncertainties has been investigated in [15] using an es-
timation approach that is based on GAMP. Meanwhile, Gri-
bonval et al. have studied a calibration framework similar to
ours [1] where the gain matrix S acts on the measurements
Fx. They have developed a variational reconstruction algo-
rithm that reconstructs x while simultaneously calibrating S.
In contrast to their work, we propose a statistical estimation
method based on the adaptive GAMP algorithm [7] that out-
performs the `1-based approach. We modify adaptive GAMP
to calibrate the measurement system by learning S directly
from L measurement vectors. Our work thus extends the sce-
nario considered in [7–9] where S is assumed to be known.
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