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ABSTRACT
In sparse recovery from measurement data a common approach is
to use greedy pursuit reconstruction algorithms. Most of these algo-
rithms have a correlation filter for detecting active components in the
sparse data. In this paper, we show how modifications can be made
for the greedy pursuit algorithms so that they use beamformers in-
stead of the standard correlation filter. Using these beamformers,
improved performance in the algorithms is obtained. In particular,
we discuss beamformers for the average and worst case scenario and
give methods for constructing them.

Index Terms— Compressed sensing, Greedy pursuit algo-
rithms, Beamforming.

1. INTRODUCTION

An active field of research is the estimation of sparse vectors from
linear measurements. A particularly interesting setup is compres-
sive sensing, where it has been proven that far fewer random mea-
surements are sufficient to fully reconstruct a sparse vector than a
dense vector. This problem has received much attention [1, 2] and
holds promises for several applications [3, 4, 5]. Several approaches
are available for the reconstruction problem; combinatorial searches,
convex relaxations [6] and greedy pursuit (GP) algorithms. Of these
approaches, the GP algorithms provide promising performances at
a low computational cost. Some common GP algorithms are Or-
thogonal matching pursuit (OMP) [7], Subspace pursuit (SP) [8] and
CoSaMP [9], which all use a matched filter to find the support set.

The compressed sensing problem can be stated as

min
x
||y −Ax||2 s.t. ||x||0 = K (1)

where A ∈ Rm×n, with m� n, has column vectors of unit length,
x ∈ Rn and ||x||0 = |supp(x)| is the number of non-zero ele-
ments of x. Many GP algorithms estimate the support set iteratively
by selecting elements maximizing |a>i y| (i.e. a matched filter) and
estimate non-zero vector components using least squares techniques.

In this paper, we investigate the possibility of improving the
performance of GP algorithms by replacing the matched filter by a
beamformer, i.e. we seek vectors bi such that the support set of
a sparse vector can be estimated by selecting elements maximizing
|b>i y|. The goal of this paper is to find vectors bi that improves
the performance of GP. The idea to use beamformers was first in-
troduced by Schnass and Vandergheynst [10] which referred to the
beamformer as a sensing dictionary. We extend the analysis of [10]
by analyzing the average and worst-case scenarios for sparse recov-
ery and deriving alternative beamformers. Finally we numerically
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compare our results with the ones in [10]. The main contributions of
this paper are:

• We analyze beamformers for the average and worst case sce-
nario.

• We propose convex methods for calculating the beamformer.

• We give simple expressions for the average case beamformer.

• We give bounds for the probability of recovery in the noisy
case.

• We numerically evaluate the beamformers and compare with
the results in [10].

In particular, we exemplify the procedure by presenting necessary
modifications to the OMP algorithm so that it can incorporate the
beamformer. We call this algorithm OMPb and in the numerical eval-
uation we see how much performance gain is obtained for OMPb with
some different beamformers. Although we focus on, and modify, the
OMP algorithm, these results can be extended to most GP algorithms.

2. BEAMFORMER FOR NOISE-FREE RECOVERY

As mentioned in the introduction, we are in this paper interested in
modifying the well known OMP algorithm so that it, instead of the
matched filter, can correlate a residual with some other vector in
order to find prominent support set indices. We present this modifi-
cation in Algorithm 1.

Here AÎ denotes the submatrix formed by the columns in Î and
x̂Î is the vector with elements from x̂ with indices in Î . If we set
B = A, OMPb will reduce to regular OMP. Here, we are interested
in finding B = (b1,b2, . . . ,bn) so that OMPb performes better
than OMP. Observe that regardless of beamformer B provided to the
algorithm, the complexity remains the same as that of OMP.

Algorithm 1 OMPb: OMP with beamformer
Input: y,A,B,K
Initialization:

1: r = y, Î = ∅, x̂ = 0.
Iteration:

1: repeat
2: i = argmaxj /∈Î |b

>
j r|

3: Î ← Î ∪ {i}
4: x̂Î = A+

Î
y

5: r = y −Ax̂
6: until |Î| = K or ||r||2 ≤ ε.

Output: Î , x̂
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OMPb will in the first iteration choose an element in the support
set if

max
i∈I
|b>i y| > max

j /∈I
|b>j y|. (2)

If xi is the element of x of maximum modulus, (2) holds pro-
vided that

|b>i ai| >
∑

j∈I\{i}

|b>i aj |+max
k/∈I

∑
j∈I

|b>k aj |. (3)

2.1. Worst Case Scenario

In order to maximize the worst case performance, we can minimize
the right hand side of (3) while keeping the left hand side constant.
However, in order to solve this problem, knowledge of the support
set is required. We therefore instead choose to minimize the contri-
bution of all possible support sets while keeping b>i ai fixed, i.e.

bi = argmin
b

(
max

|J|=≤K,i/∈J

∑
j∈J

|b>aj |

)
s.t. b>ai = 1. (4)

The optimization problem (4) is convex and can be solved using
methods from [11, 12] or programs like cvx [13]. The matrix B
minimizes the contribution from the sidelobes if we make the con-
nection to array signal processing [14]. For this reason we refer to B
as a beamformer. When K is unknown, an alternative is to construct
B with K = 1, i.e. only minimize the largest sidelobe.

2.2. Average Case Scenario

When the support set is drawn at random and xI is a random vari-
able, one approach to improving the average performance of GP al-
gorithms to minimize the probability that the algorithm chooses an
index not belonging to the support set. While the average case anal-
ysis with random coefficients and support set is difficult in general,
the following lemma gives us some insight to the case where the
non-zero elements are drawn from a Gaussian distribution.

Lemma 1. Let c,d ∈ Rn and let z ∼ N (0, σ2
zI), where I is the

n× n identity matrix, then

P (|c>z| > |d>z|) = 1

π
arccos

(
||d||22 − ||c||22

||c− d||2 · ||c+ d||2

)
Proof: By symmetry we have that

P = P (|c>z| > |d>z|)

= 2P
(
c>z ≥ 0, (c− d)>z ≥ 0, (c+ d)>z ≥ 0

)
The last probability is given by the angle θ between the hyperplanes
(c− d)>x = 0 and (c+ d)>x = 0 divided by 2π. The angle
between the hyperplanes is π minus the angle between the normal
vectors. Using that π − arccos(t) = arccos(−t) we find the proba-
bility

P =
2

2π
arccos

(
− (c− d)>(c+ d)

||c− d||2 · ||c+ d||2

)
=

1

π
arccos

(
||d||22 − ||c||22

||c− d||2 · ||c+ d||2

)
.

This completes the proof.

When Cov(z) = C we may pre-whiten z by setting ci =

C−1/2c̃i. The inner products of ci and cj are then replaced by in-
ner products of c̃i and c̃j which can be computed using that c̃>i c̃j =
c>i Ccj .

We can use Lemma 1 for the average case scenario by setting

ci = b>i AI , z = xI

From Lemma 1 we get that the probability to choose i ∈ I over
j /∈ I is large when ||ci||2 is large and ||cj ||2 is small. Since the
support set is unknown, we minimize the maximum length of ci over
all support sets while keeping b>i ai fixed for all i, i.e. we choose
the column vectors in B as

bi = argmin
b

(
max

|J|≤K,i/∈J

∑
j∈J

(b>aj)
2

)
s.t. b>ai = 1. (5)

This is a convex optimization problem and can be solved using meth-
ods from e.g. [12]. Setting K = n− 1 gives the explicit solution

bi =
(AA>)−1ai

a>i (AA>)−1ai
, (6)

that is B = (A+)>D where D is a diagonal matrix with entries
Dii = 1/(A+A)ii and A+ is the Moore-Penrose pseudoinverse of
A. Note that (6) can be interpreted as a Capon method for recovery
of sparse random vectors [14].

Another motivation for using the pseudoinverse as a beamformer
is to choose B so that B>Ax is as close as possible to x in the mean
square sense, i.e. we choose B to minimize

E[||x−B>Ax||22] = tr
(
(I−B>A)E[xx>](I−B>A)>

)
=
Kσ2

x

n
||I−B>A||2F

where E denotes the expectation value, we assumed that all support
sets are chosen with equal probability and that the components of xI
are random variables with E[xixj |{i, j} ⊂ I] = σ2

xδij . This gives
us the minimizer

B = (A+)>

Note that we did not make any assumptions on the distribution of xI ,
so this argument holds also for non-Gaussian random signals, e.g.
binary (±1) signals. This beamformer is different from (6) since in
general b>i ai 6= 1.

3. BEAMFORMER FOR NOISY RECOVERY

We here analyze beamformers for the noisy worst and average case
scenario and propose new methods of calculating them.

3.1. Worst case scenario

When the measurements are corrupted with random noise

y = Ax+ n, (7)

the worst case condition (3) for the beamformer to successfully re-
cover the element i ∈ I of maximum modulus in the first iteration
becomes modified to [15]

|b>i ai| >
∑

j∈I\{i}

|b>i aj |+max
k/∈I

∑
j∈I

|b>k aj |+
2

|xi|
|b>i n|
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When the noise is unbounded (e.g. Gaussian) we can never recover
x with probability one. We therefore instead try to maximize the
probability of recovering i ∈ I .

Theorem 1. Assume that the additive noise is zero-mean Gaussian
distributed, n ∼ N (0,C), b>i ai = 1 for all i = 1, 2, . . . , n and

c = 1− µ1(A,B,K)− µ1(A,B,K − 1) > 0

where µ1(A,B,K) is the cross cumulative coherence [10]

µ1(A,B,K) = max
i,|J|≤K,i/∈J

∑
j∈J

|b>i aj |

Then the probability P̃ that OMPb recovers the component xi of x
with maximum modulus in the first iteration obeys

P̃ ≥ 1− 2Q

(
c|xi|√
b>i Cbi

)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt is the tail probability of the nor-
mal distribution.
Proof: A sufficient condition for OMPb to recover i ∈ I is

2

|xi|
|b>i n| < 1−

∑
j∈I\{i}

|b>i aj | −max
l/∈I

∑
j∈I

|b>l aj | (8)

Since ∑
j∈I\{i}

|b>i aj | ≤ µ1(A,B,K − 1)

max
l/∈I

∑
j∈I

|b>l aj | ≤ µ1(A,B,K)

we find that (8) holds provided that |b>i n| < c|xi|/2. Using this we
find that

P̃ ≥ P
(
|b>i n| <

c|xi|
2

)
(9)

When n ∼ N(0,C), then zi = b>i n is Gaussian N(0, σ2
i ), where

σ2
i = b>i Cbi. Using that P (|zi| < ε) = 1− 2Q (2ε/σi) we arrive

at the result.

Note that (9) also holds for non-gaussian noise distributions.
Theorem 1 states that the probability of recovering the component of
maximum modulus increases with increasing Signal-to-Noise Ratio
(SNR), as can be expected. One way to maximize P̃ is to maximize
the argument of the Q-function. The argument is, however, a non-
convex function of B and is therefore difficult to maximize. A more
accesible approach is set

bi = argmin
b

(
max

|J|=K,i/∈J

∑
j∈J

|b>aj |+ λb>Cb

)
(10)

s.t. b>ai = 1

where λ ≥ 0 is a design parameter.

3.2. Average Case Scenario

For (7) with xI ∼ N (0, σ2
xI) and n ∼ N (0,C) we can use a mod-

ification of Lemma 1 for the non-white case to find the probability.
By rewriting

b>i (Ax+ n) = (c>i , b
>
i )

(
xI
n

)
,

we find the probability (11) at the top of the next page.
To minimize the influence of noise, we minimize the length of

the vectors bj while maintaining the properties of the vectors ci.
One approach is, as before, to penalize the length of bi by setting

bi = argmin
b

(
max

|J|≤K,i/∈J

∑
j∈J

|b>aj |2 + λb>Cb

)
(12)

s.t. b>ai = 1,

where λ is a design parameter. Again setting K = n− 1, we obtain
the beamformer

bi =
(AA> + λC)−1ai

a>i (AA> + λC)−1ai
. (13)

We see that both (10) and (13) converge to A when λ→∞.

4. SIMULATIONS

For the simulational evaluation, we compare our proposed beam-
formers where Bpinv = (A+)> and Bspinv = (A+)>D, with
regular OMP (i.e., B = A) and the Equiangular Tight Frame (ETF
beamformer) (referred to as BETF = ETF(A)) presented in [10].
The noisy setting is used to evaluate the robustness of the algorithms
under noise. We compare these algorithms in noisy and noise-free
environments for fixed m and n, where we vary K. We omit the
worst case beamformers since they are time consuming to calculate
and perform worse than Bpinv and Bspinv in the scenario consid-
ered. In all cases we chose the non-zero components in x from a
Gaussian independent identically distributed (i.i.d.) source. For the
noisy signals, we characterize the level of measurement noise by the
signal-to-measurement-noise (SMNR) ratio as

SMNR =
E
{
‖x‖22

}
E {‖n‖22}

. (14)

To compare the different algorithms, we define two different per-
formance measures. The first one is the signal-to-reconstruction-
error-ratio (SRER) defined as

SRER =
E
{
‖x‖22

}
E {‖x− x̂‖22}

. (15)

The SRER performance measure is natural for the noisy environment.
For clean measurements, the SRER is not so convenient since for
perfect recovery it reaches machine precision. Instead, we define
another performance measure which provides a direct measure of
estimating the underlying support set. This measure is a distortion
defined by d(I, Î) = 1 −

(
|I ∩ Î|/|I|

)
[16] and we have recently

used it in [17]. Considering a large number of realizations (signal
vectors), we can compute the average of d(I, Î). We define the av-
erage support-set cardinality error (ASCE) as follows

ASCE = E
{
d(I, Î)

}
= 1− E

{
|I ∩ Î|
|I|

}
. (16)
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P (|b>i (Ax+ n)| > |b>j (Ax+ n)|) = 1

π
arccos

(
σ2
x(||cj ||22 − ||ci||22) + (b>j Cbj − b>i Cbi)√

(σ2
x||cj ||22 + σ2

x||ci||22 + b>i Cbi + bjCbj)2 − 4(σ2
xc
>
i cj + b>i Cbj)2

)
(11)

10 15 20 25 30 35 40
0

5

10

15

20

25

30

K

S
R

E
R

 [
d
B

]

 

 
OMPb(A)
OMPb(B

pinv
)

OMPb(B
spinv

)

OMPb(B
ETF

)

Fig. 1. Figure showing a noisy measurement case where SMNR =
20dB where the performance is measured in SRER.

Note that the ASCE has the range [0, 1] and our objective is to achieve
a lower ASCE. Along with SRER, the ASCE is used as the second
performance evaluation measure because the principle objective of
GP algorithms is to estimate the underlying support set.

Next we describe the simulation setup. Fixing the signal vector
size n and the number of measurements m we do the following:

1. Choose a K.
2. Randomly generate an m × n sensing matrix A where the

components are drawn independently from an i.i.d. Gaussian
source (i.e. ai,j ∼ N (0, 1)) and then scale the columns of
A to unit-norm.

3. Generate our beamformers as Bpinv = (A+)>, Bspinv =
(A+)>D, where D is a diagonal matrix with entries Dii =
1/(A+A)ii and BETF = ETF(A).

4. Generate a support-set I of cardinality K. The support-set is
uniformly chosen from {1, 2, ..., n}.

5. Randomly generate a sparse signal vector x with non-zero
components chosen independently from a Gaussian source.

6. Compute the measurement vector y = Ax + n, where n is
standard i.i.d. Gaussian noise.

7. Apply the OMPb algorithms on the data y and the matrices
A, Bpinv , Bspinv and BETF.

In the simulation procedure above, q number of different sensing
matrices A are created. For each sensing matrix, p data vectors are
generated. In total, we will average over q · p data to evaluate the
performance.

4.1. Parameters and Simulation Set-up

For the plots presented in this paper, we have chosen: n = 500,
m = 100. We have chosen the number of matrices A to q = 400
and the number of data-sets x to 400 (i.e. p = 400), giving a total
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Fig. 2. Figure showing a clean measurement case where the perfor-
mance measure is the ASCE.

number of q · p = 16 · 104 data in each data-point for statistics. We
used 100 iterations in the computation of the ETF beamformer.

4.2. Analysis of the Simulation Results

Figure 1 shows that OMPb with Bpinv and Bspinv perform better
than regular OMP for K ≥ 17. We found that OMPb with BETF

performed worse than regular OMP, this seems to be because in this
scenario n

m
= 5 is large. When n

m
is smaller, the performance of

ETF is greatly improved [10]. The simulation indicates that Bpinv

and Bspinv seems well also in the noisy setting.
When varying K in the noise-free scenario we find that Bpinv

and Bspinv give similar values of the ASCE for all values of K. For
smallK (10 ≤ K ≤ 25) the improvement is about 5 dB over regular
OMP as can be seen in Figure 2. Again the performance of ETF seems
to be due to the choice n

m
.

5. CONCLUSION

In this paper we extend the work in [10] of using beamformers to
improve the performance of greedy pursuit algorithms. By analyzing
the worst and average case scenario we found beamformers thath can
be computed using convex optimization methods. For the average
case we used Lemma 1, which gives the probability of choosing one
index over another when xI is Gaussian, to motivate a beamformer
which minimizes the sum of squared inner products. For the largest
possibleK we obtained the (scaled) pseudoinverse as a beamformer.
Treating the noisy case resulted in similar beamformers. We treat the
noisy case using similar methods and propose beamformers similar
to the noise-free case. Simulations confirmed that OMPb with the
beamformers Bpinv and Bspinv perform better than regular OMP.
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