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Abstract— This paper considers the problem of reconstructing
sparse or compressible signals from one-bit quantized measure-
ments. We study a new method that uses a log-sum penalty
function, also referred to as the Gaussian entropy, for sparse
signal recovery. Additionally, in the proposed method, the sigmoid
function is introduced to quantify the consistency between the
measured one-bit quantized data and the reconstructed signal.
A fast iterative algorithm is developed by iteratively minimizing
a convex surrogate function that bounds the original objective
function. This leads to an iterative reweighted process that
alternates between estimating the sparse signal and refining
the weights of the surrogate function. Connections between the
proposed algorithm and other existing methods are discussed.
Numerical results are provided to illustrate the effectiveness of
the proposed algorithm.

Index Terms— Compressed sensing, one-bit quantization,
Gaussian entropy, surrogate function.

I. INTRODUCTION

Conventional compressed sensing framework recovers a
sparse signal x ∈ R

n from only a few linear measurements:

y = Ax (1)

where y ∈ R
m denotes the acquired measurements, A ∈

R
m×n is the sampling matrix, and m ≪ n. Such a problem

has been extensively studied and a variety of algorithms
that provide consistent recovery performance guarantee were
proposed, e.g. [1]–[3]. In practice, however, measurements
have to be quantized before being further processed. Moreover,
in distributed systems where data acquisition is limited by
bandwidth and energy constraints, aggressive quantization
strategies which compress real-valued measurements into one
or only a few bits of data are preferred. This has inspired recent
interest in studying compressed sensing based on quantized
measurements. Specifically, in this paper, we are interested in
an extreme case where each measurement is quantized into
one bit of information

b = sign(y) = sign(Ax) (2)

where “sign” denotes an operator that performs the sign func-
tion element-wise on the vector, the sign function returns 1 for
positive numbers and −1 otherwise. Clearly, in this case, only
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the sign of the measurement is retained while the information
about the magnitude of the signal is lost. This makes an exact
reconstruction of the sparse signal x impossible. Nevertheless,
if we impose a unit-norm on the sparse signal, it has been
shown [4], [5] that signals can be recovered with a bounded
error from one bit quantized data. Besides, in many practical
applications such as source localization, direction-of-arrival
estimation, and chemical agent detection, it is the locations
of the nonzero components of the sparse signal, other than
the amplitudes of the signal components, that have significant
physical meanings and are of our ultimate concern. Recent
results [6] show that asymptotic reliable recovery of the
support of sparse signals is possible even with only one-bit
quantized data.

The problem of recovering a sparse or compressible sig-
nal from one-bit measurements was firstly introduced by
Boufounos and Baraniuk in their work [7]. Following that, the
reconstruction performance from one-bit measurements was
more thoroughly studied [4]–[6], [8] and a variety of one-
bit compressed sensing algorithms such as binary iterative
hard thresholding (BIHT) [4], matching sign pursuit (MSP)
[9], l1 minimization-based linear programming (LP) [5], and
restricted-step shrinkage (RSS) [10] were proposed. Although
achieving good reconstruction performance, these algorithms
either require the knowledge of the sparsity level [4], [9] or
are l1-based methods that often yield solutions that are not
necessarily the sparsest [5], [10]. In this paper, we study
a new method that uses the Gaussian entropy-based penalty
function for sparse signal recovery. The Gaussian entropy has
the potential to be much more sparsity-encouraging than the
l1 norm. By resorting to a bound optimization approach, we
propose an iterative reweighted algorithm that successively
minimizes a sequence of convex surrogate functions with
its weights for the next iteration computed based on the
current estimate. The proposed algorithm has the advantage
that it does not need the cardinality of the support set, K,
of the sparse signal. Moreover, simulation results show that
the proposed algorithm outperforms the l1-type methods in
recovery of the support of sparse signals.

II. ONE-BIT COMPRESSED SENSING

Since the only information we have about the original signal
is the sign of the measurements, we hope that the reconstructed
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signal x̂ yields estimated measurements that are consistent
with our knowledge, that is

sign(aT
i x̂) = bi ∀i (3)

or in other words

bia
T
i x̂ ≥ 0 ∀i (4)

where ai denotes the transpose of the ith row of the sampling
matrix A, bi is the ith element of the sign vector b. This
consistency can be enforced by hard constraints [5], [10] or
can be quantified by a well-defined metric which is meant
to be maximized/minimized [4], [9], [11]. In this paper, we
introduce the sigmoid function to quantify the consistency
between the measurements and the estimates. The metric is
defined as

φ(x) ,

m
∑

i=1

log(σ(bia
T
i x)) (5)

where σ(x) , 1/(1 + exp(−x)) is the sigmoid function.
The sigmoid function, with an ‘S’ shape, approaches one
for positive x and zero for negative x. Hence it is a useful
tool to measure the consistency between bi and aT

i x. Also,
the sigmoid function, differentiable and log-concave, is more
amiable for algorithm development than the indicator function
adopted in [4], [9], [11]. Note that the sigmoid function,
also referred to as the logistic regression model, has been
widely used in statistics and machine learning to represent
the posterior class probability.

Naturally our objective is to find x to maximize the
consistency between the acquired data and the reconstructed
measurements, i.e.

max
x

φ(x) =
m
∑

i=1

log(σ(bia
T
i x)) (6)

This optimization, however, does not necessarily lead to
a sparse solution. To obtain sparse solutions, a sparsity-
encouraging term needs to be incorporated to encourage
sparsity of the signal coefficients. The most commonly used
sparsity-encouraging penalty function is l1 norm. An attractive
property of the l1 norm is its convexity, which makes the l1-
based minimization a well-behaved numerical problem. De-
spite its popularity, l1 type methods suffer from the drawback
that the global minimum does not necessarily coincide with the
sparsest solution, particularly when only a few measurements
are available for signal reconstruction [12], [13]. In this paper,
we consider the use of an alternative sparsity-encouraging
penalty function for sparse signal recovery. This penalty
function, also referred to as the Gaussian entropy, is defined
as

hG(x) =

n
∑

i=1

log |xi|
2 (7)

where xi denotes the ith component of the vector x. Such
a log-sum penalty function was firstly introduced in [14] for
basis selection. This penalty function has the potential to be

much more sparsity-encouraging than the l1 norm. It can be
readily observed that the log-sum (Gaussian entropy) penalty
function, like l0 norm, has infinite slope at xi = 0, ∀i, which
implies that a relatively large penalty is placed on small
nonzero coefficients to drive them to zero. The reason why
the Gaussian entropy is more sparsity-encouraging than l1
function will also be explained from an algorithmic perspective
later in our paper. Using this penalty function, the problem of
finding a sparse solution to maximize the consistency can be
formulated as follows

x̂ = argminL(x)

= argmin
x

−
m
∑

i=1

log(σ(bix
Tai)) + λ

n
∑

i=1

log |xi|
2 (8)

where λ is a parameter controlling the trade-off between the
degree of sparsity and the quality of consistency.

A. Proposed Iterative Algorithm

Due to the concave and unbounded nature of the Gaus-
sian entropy, the objective function (8) is non-convex and
unbounded from below. Instead of resorting to the gradient
descend method, we propose an iterative reweighted algorithm
which provides fast convergence and guarantees that every
iteration results in a decreasing objective function value.
The algorithm is developed based on a bound optimization
approach [15], [16]. The idea is to construct a surrogate
function Q(x|x̂(t)) such that

Q(x|x̂(t))− L(x) ≥ 0 (9)

and the minimum is attained when x = x̂(t), i.e.
Q(x̂(t)|x̂(t)) = L(x̂(t)). Optimizing L(x) can therefore be
replaced by minimizing the surrogate function Q(x|x̂(t))
iteratively. Suppose that

x̂(t+1) = min
x

Q(x|x̂(t))

We can ensure that

L(x̂(t+1)) =L(x̂(t+1))−Q(x̂(t+1)|x̂(t)) +Q(x̂(t+1)|x̂(t))

≤L(x̂(t))−Q(x̂(t)|x̂(t)) +Q(x̂(t+1)|x̂(t))

≤L(x̂(t))−Q(x̂(t)|x̂(t)) +Q(x̂(t)|x̂(t))

=L(x̂(t)) (10)

where the first inequality follows from the fact that
Q(x|x̂(t)) − L(x) attains its minimum when x = x̂(t);
the second inequality comes by noting that Q(x|x̂(t)) is
minimized at x = x̂(t+1). We see that, through minimizing
the surrogate function iteratively, the objective function L(x)
is guaranteed to decrease at each iteration.

We now discuss how to find a surrogate function for the
original problem (8). Ideally, we hope that the surrogate
function is differentiable and convex so that the minimization
of the surrogate function is a well-behaved numerical problem.
Since the consistency evaluation term is convex, our objective
is to find a convex surrogate function for the Gaussian entropy
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defined in (7). An appropriate choice of such a surrogate
function has a quadratic form and is given by

f(x|x̂(t)) ,
n
∑

i=1

(

x2
i

(x̂
(t)
i )2

+ log(x̂
(t)
i )2 − 1

)

(11)

It can be easily verified that

f(x|x̂(t))− hG(x) ≥ 0 (12)

with the minimum 0 attained when x = x̂(t). Therefore the
convex function f(x|x̂(t)) is a desired surrogate function for
the Gaussian entropy hG(x). As a consequence, the surrogate
function for the objective function L(x) is given by

Q(x|x̂(t))

=−
m
∑

i=1

log(σ(bix
Tai)) + λ

n
∑

i=1

(

x2
i

(x̂
(t)
i )2

+ log(x̂
(t)
i )2 − 1

)

=−
m
∑

i=1

log(σ(bix
Tai)) + λxTD(x̂(t))x+ constant (13)

where

D(x̂(t)) , diag
{

(x̂
(t)
1 )−2, . . . , (x̂(t)

n )−2
}

Optimizing L(x) now reduces to minimizing the surrogate
function Q(x|x̂(t)) iteratively. For clarity, the iterative algo-
rithm is briefly summarized as follows.

1) Given an initialization x̂(0).
2) At iteration t > 0, minimize Q(x|x̂(t)), which yields

a new estimate x̂(t+1). Based on this new estimate,
construct a new surrogate function Q(x|x̂(t+1)).

3) Go to Step 2 if ‖x̂(t+1) − x̂(t)‖2 > ǫ, where ǫ is a
prescribed tolerance value; otherwise stop.

Remark 1: The second step involves optimization of the
surrogate function Q(x|x̂(t)). Since the surrogate function is
differentiable and convex, minimizing Q(x|x̂(t)) is a well-
behaved numerical problem. Any gradient-based search such
as Newton’s method which has a fast convergence rate can be
used and is guaranteed to converge to the global minimum.

Remark 2: The above algorithm results in a non-increasing
objective function value of L(x). In this manner, the iterative
algorithm eventually converges to a local minimum of L(x).
It should be emphasized that the cost function L(x) is non-
convex. Therefor it is important to choose a suitable starting
point for the algorithm. Our simulations suggest that initial-
izing with x̂(0) = AT b usually delivers good reconstruction
performance. Moreover, we found from our simulations that,
despite starting from different (randomly generated) initial
points, if the number of bits, m, is sufficiently large, the
support of the reconstructed sparse solution is guaranteed to
coincide with, or at least be a subset of, the true support of
the sparse signal x.

Remark 3: The proposed iterative algorithm can be consid-
ered as consisting of two alternating steps. First, we estimate x

through minimizing the current surrogate function Q(x|x̂(t)).
Second, based on the estimate of x, we update the weights of

the weighted l2 norm penalty of the surrogate function. This
alternating process finally results in a sparse solution. To see
this, note that the weighted l2 norm of x has their weights
specified as {(x̂

(t)
i )−2}. The penalty term has the tendency to

decrease these entries in x whose corresponding weights are
large, i.e., whose current estimates {x̂

(t)
i } are already small.

This negative feedback mechanism keeps suppressing these
entries until they reach machine precision and become zeros,
while leaving only a few prominent nonzero entries survived
to meet the consistency requirement.

III. RELATED WORK

Our developed algorithm has a close connection with the
FOcal Underdetermined System Solver (FOCUSS) algorithm
[17] since the latter algorithm also uses an iterative reweighted
approach to find sparse solutions to underdetermined systems
y = Ax. Specifically, at each iteration, FOCUSS solves a
reweighted l2 minimization with weights w

(t+1)
i = 1/|x

(t)
i |p,

where p ∈ [1 2]. It was also shown [17] that when p =
2, FOCUSS is equivalent to a modified Newton’s method
minimizing the Gaussian entropy function. As compared with
FOCUSS, our paper considers a more general framework
in which the data model allows measurement errors/noise
and is not confined to be linear, and a general connection
between the sparsity-promoting penalty function and the it-
erative reweighted process is established through the use of
the surrogate function. In [13], a similar iterative reweighted
algorithm was proposed to enhance sparsity of recovered
signals. The algorithm consists of solving a sequence of
weighted l1-minimization problems with its weights for the
next iteration computed based on the current estimate. Such
an algorithm, interestingly, is also shown closely related to the
log-sum penalty function, i.e. the Gaussian entropy function.

We now explore the relationship between our proposed
algorithm and the l1-minimization type methods. Following
(8), we can formulate a l1 norm-based sparsity-promoting
optimization

x̂ = argmin
x

L̃(x) , −
m
∑

i=1

log(σ(bix
Tai)) + λ

n
∑

i=1

|xi|

(14)

Similarly, a surrogate function can be constructed to bound the
above optimization, from which an iterative algorithm can be
developed to solve (14). Note that the l1 function |x| can also
be upper bounded by a quadratic function. It can be readily
verified that the surrogate function for l1 norm is given by
[16]

f̃(x|x̂(t)) ,
1

2

n
∑

i=1

(

x2
i

|x̂
(t)
i |

+ |x̂
(t)
i |

)

(15)

Therefore the solution to (14) can be found by iteratively
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minimizing the following surrogate function

Q̃(x|x̂(t))

=−
m
∑

i=1

log(σ(bix
Tai)) +

λ

2

n
∑

i=1

(

x2
i

|x̂
(t)
i |

+ |x̂
(t)
i |

)

=−
m
∑

i=1

log(σ(bix
Tai)) +

λ

2
xT D̃(x̂(t))x+ constant (16)

where

D̃(x̂(t)) , diag
{

1

|x̂
(t)
1 |

, . . . ,
1

|x̂
(t)
n |

}

The surrogate function Q̃(x|x̂(t)) has a similar form as (13),
except that the surrogate function for the Gaussian entropy
updates its weights using (x̂

(t)
i )−2, while the surrogate func-

tion for the l1 norm adjusts its weights with (|x̂
(t)
i |)−1. This

seemingly slight difference, however, results in very different
convergence behavior. Update with (|x̂

(t)
i |)−1 guarantees con-

verging to a unique global minimum, while the other update
rule suffers from multiple local minima. On the other hand,
updating weights with (x̂

(t)
i )−2 renders a more intense effect

in de-emphasizing the entries in x. As a consequence, the
proposed algorithm has the potential to be much more sparsity-
encouraging than the l1 type methods.

IV. NUMERICAL RESULTS

We now carry out experiments to illustrate the performance
of our proposed one-bit compressed sensing algorithm. In
our simulations, the K-sparse signal is randomly generated
with the support set of the sparse signal randomly chosen
according to a uniform distribution. The signals on the support
set are independent and identically distributed (i.i.d.) Gaussian
random variables with zero mean and unit variance. The
measurement matrix A ∈ R

m×n is randomly generated with
each entry independently drawn from Gaussian distribution
with zero mean and unit variance, and then each column of A
is normalized to unit norm for algorithm stability. We compare
our proposed algorithm with the other two algorithms, namely,
the l1 minimization-based linear programming (LP) algorithm
[5] (referred to as “one-bit LP”), and the iterative algorithm
proposed in Section III to solve the optimization (14) (referred
to as “L1-optimization (14)”). Both the latter two algorithms
are l1 type methods, with the consistency enforced by different
criteria.

We investigate the support recovery performance of re-
spective algorithms. Support recovery accuracy are measured
by the false alarm (misidentified) rate and the miss rate. A
false alarm event represents the case where coefficients that
are zero in the original signal are misidentified as nonzero
after reconstruction, while a miss event stands for the case
where the nonzero coefficients are missed and determined
to be zero. Fig. 1 depicts the false alarm and miss rates
of respective algorithms as a function of the sparsity level
K (that is, the number of nonzero coefficients), where we
set m = 100, n = 50, and λ = 1/2 in our simulations.
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Fig. 1. (a). False alarm rates of respective algorithms; (b). Miss rates of
respective algorithms.

Results are averaged over 104 independent runs. We see that
the proposed algorithm provides more accurate identification
of the true support set: it has a similar (or slightly higher) miss
rate as (than) that of the l1-based methods, while meanwhile
achieves a considerably lower false alarm rate than both l1
type methods. Our result also indicates that the proposed
algorithm yields solutions sparser than l1 type methods, which
corroborates our theoretical analysis.

V. CONCLUSIONS

We proposed an iterative reweighted algorithm for sparse
signal reconstruction from one-bit quantized measurements.
The proposed algorithm consists of solving a sequence of
minimization problems whose weights are updated based on
the current estimate. Analyses and simulation results show
that the proposed algorithm that uses the log-sum penalty
function is more sparsity-encouraging than l1-based methods,
and outperforms l1 type methods in recovering the true support
of the sparse signal.
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