
JOINT RECOVERY OF SPARSE SIGNALS AND PARAMETER PERTURBATIONS WITH
PARAMETERIZED MEASUREMENT MODELS

Erik C. Johnson, Douglas L. Jones

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

ABSTRACT

Many applications involve sparse signals with unknown, con-
tinuous parameters; a common example is a signal consisting
of several sinusoids of unknown frequency. Applying com-
pressed sensing techniques to these signals requires a highly
oversampled dictionary for good approximation, but these
dictionaries violate the RIP conditions and produce incon-
sistent results. We consider recovering both a sparse vector
and parameter perturbations from an initial set of parameters.
Joint recovery allows for accurate reconstructions without
highly oversampled dictionaries. Our algorithm for sparse
recovery solves a series of linearized subproblems. Recov-
ery error for noiseless simulated measurements is near zero
for coarse dictionaries, but increases with the oversampling.
This technique is also used to reconstruct Radio Frequency
data. The algorithm estimates sharp peaks and transmitter
frequencies, demonstrating the potential practical use of the
algorithm on real data.

Index Terms— Sparse Reconstruction, Sparse Signal,
Parameterized Model, Parameter Perturbations, Frequency
Estimation

1. INTRODUCTION

A wide range of signal processing applications require recov-
ery of signals with unknown, continuous parameters. Quite
often these signals are also sparse. One example is a time-
domain signal consisting of multiple sinusoids of unknown
frequency, which is frequency-sparse.

In the field of Compressed Sensing (CS), there has been a
great deal of research into the reconstruction of sparse signals
from few measurements. A k-sparse signal x ∈ RN is one
with only k nonzero elements. By enforcing signal sparsity,
one can recover, under certain conditions, the sparse solution
to an undetermined system ([1] and [2] among many others).
Given a linear measurement model b = A ∗ x + e and ap-
propriate conditions on A, one can often recover a k-sparse x
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by solving an `1 minimization problem known as Basis Pur-
suit (BP) [3] or using greedy algorithms such as Orthogonal
Matching Pursuit [4].

One of the major assumptions of CS recovery is that the
signal dictionary A is exactly known. For sparse signals with
unknown parameters, however, the dictionary is not given.
In this case, one could sample and discretize the parameter
space to form a signal dictionary. Intuitively a dense sampling
is needed to obtain an accurate reconstruction. A dense dis-
cretization, however, can result in poor recovery as the highly
correlated dictionary violates the RIP condition [1].

The case of completely unknown signal dictionaries has
been explored in Blind CS [5]. Sparsity-cognizant Total
Least-Squares [6] considers perturbing a known A by an
unstructured perturbation term. The authors of [7] and [8]
consider a structured perturbation that is parameterized, but
consider only a linearized form. The authors of [9] formulate
an iterative thresholding algorithm specifically for parametric
spectral estimation.

In this paper, we consider a general parameterized model
for the measurement matrix, A = A(ω + dω). Here ω ∈
RN is a set of parameters used to generate the sensing ma-
trix. Given an initial vector of parameters ω, the goal is to
jointly recover a sparse vector x and parameter perturbations
dω. This problem is solved by a new nonlinear program-
ming algorithm to find critical points of the problem. This
recovery algorithm, Successive Linearized Programming for
Sparse Recovery (SLPSR), solves successive linearized prob-
lems within a trust-region [10].

Our work makes several contributions. The formulation
of our parameter perturbation recovery is more general than
the linear structure in [7], and contains the linear structure as a
subset. The SLPSR algorithm is, to the best of our knowledge,
novel and is applicable to a far wider range of models than the
alternating algorithm in [7]. Unlike the spectral-estimation
algorithm in [9], SLPSR is applicable to many different pa-
rameterized measurement models. Finally, we apply our re-
covery method to real-world data, helping to demonstrate the
practical potential of jointly recovering sparse signals and pa-
rameter perturbations.

In this paper, we use bold, lower-case letters for vectors
and bold, upper-case letters for matrices. The ∗ superscript
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denotes the solution to an optimization problem. Subscripts
indicate an element or subset of a vector, e.g. x3 and xx>0.

2. RECOVERY PROBLEM FORMULATION WITH
PARAMETERIZED MODEL

We consider recovering a sparse vector x ∈ CN and param-
eter perturbations dω ∈ RN , given a set of initial parameters
ω ∈ RN and a model a(ωi) that maps a parameter value to a
vector in CN . In essence, ω discretizes the space of possible
parameters. The goal is to recover the unknown signal x from
a set of noisy measurements given by b ∈ CM . In order to
jointly recover a sparse vector of weights and a sparse vector
of parameter perturbations, we solve the following problem,
referred to as Perturbed Sparse Recovery (PSR).

min
x,dω

‖x‖1 + λ ∗ ‖dω‖1

subject to ‖b−A(ω + dω) ∗ x‖2 ≤ ε

where the measurement model A(ω + dω) maps RN to
CM×N is given by

A(ω+dω) = [a(ω1 +dω1)|a(ω2 +dω2)| · · · |a(ωN +dωN )]

In this formulation, the parameter λ ∈ R weights the trade-off
between sparsity of the recovered weights and the size of the
perturbations and the parameter ε ∈ R allows for deviation
from the noisy measurements. The `1 norm is used to promote
sparsity in the final solution. The elements of the model a(ωi)
must be differentiable with respect to ωi.

3. SUCCESSIVE LINEARIZED PROGRAMMING
FOR SPARSE RECOVERY

In this section, we propose an algorithm for finding local
minima of the PSR problem by solving linearized subprob-
lems. The algorithm, Successive Linearized Programming
for Sparse Recovery (SLPSR), takes an initial, feasible point
x0,dω0 and generates a series of feasible iterates xk,dωk.
The iterates are generated as the solutions to linearized ver-
sions of the PSR problem generated by a first-order Taylor
series approximation, using the Jacobian (J(xk,dωk)) of the
function b − A(ω + dωk) ∗ xk at xk,dωk. A step sx =
x − xk, sdω = dω − dωk from the current iterate is found
by solving the linearized problem. As the linearization only
holds around the point xk,dωk, the step is restricted to a
Trust-Region [10] around the point xk,dωk. The linearized
subproblem, MinSubproblem, is defined as:

arg min
sx,sdω

‖xk + sx‖1 + λ ∗ ‖dωk + sdω‖1

subject to ‖b−A(ω + dωk) ∗ xk + J ∗ (

[
sx
sdω

]
)‖2 ≤ ε

‖
[
sx
sdω

]
‖2 ≤ ∆k

The trust-region is enforced by limiting the norm of the step
sx, sdω with the parameter ∆k. This ensures iterates reduce
the objective function. After calculating the step for the lin-
earized subproblem, the new point xk+sx,dωk+sdω is only
a tentative solution as it may not be feasible. A correction step
is calculated by fixing dω+sdω and calculating the minimum
change in δx to produce a feasible solution. The function
FeasibleProjection is defined as the minimum norm δx that
satisfies ‖b−A(ω+dωk+sdω)∗(xk+sx+δx)‖2 ≤ ε. Given
this new point xk+sx+δx, ω+dωk+sdω , the new objective
function value, ‖xk + sx + δx‖1 + λ ∗ ‖ω + dωk + sdω‖1,
is calculated. If this function value is an improvement over
the previous k, the new point is accepted and the trust region
radius, ∆k+1, increased. If it is not an improvement, the algo-
rithm remains at xk,dωk and decreases the trust region radius
∆k. This continues until the first-order necessary conditions
are satisfied or a maximum number of iterations are reached.
To recover complex-valued signals, the subproblems are cast
as Second-Order Conic Programs. Solving for the feasible
projection is simply the projection onto a convex set.

Algorithm 1 Successive Linearized Programming for Sparse
Recovery (SLPSR)
Require: 0 < ν < 1

1: while x,dω is not First-Order Critical do
2: Jk ← J(x,dω)
3: Ak ← A(ω + dω)
4: sx, sdω ←MinSubproblem
5: δx ← FeasibleProjection
6: if ‖x + sx + δx‖1 + λ ∗ ‖dω + sdω‖1 < ‖x‖1 + λ ∗
‖dω‖1 then

7: x← x + sx + δx
8: dω ← dω + sdω
9: ∆← 1

ν ∗∆
10: else
11: x← x
12: dω ← dω
13: ∆← ν ∗∆
14: end if
15: end while

3.1. First-Order Necessary Conditions for Inequality
Constraints

To provide a stopping criterion for SLPSR, we must be able
to characterize first-order critical points of the PSR problem.
The `1 norm, however, is not differentiable at any point where
an element equals zero. It is possible, however, to charac-
terize first-order critical points using the subdifferential [11]
of the objective function, ∂f(x,dω). The first-order criti-
cal condition at a feasible point x,dω is 0 ∈ ∂f(x,dω) +
J(x,dω)T ∗ (b − A(ω + dω) ∗ x) ∗ γ for some lagrange
multiplier γ ≥ 0. This can be extended to complex-valued
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variables using the well-known CR calculus [12] and writ-
ing the real-valued objective function in terms of the real and
complex parts of the complex variables.
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Fig. 1. The top figure shows sparse signal recovery of four
complex sinusoids recovered from 16 measurements at 10dB
SNR of simulated frequency-sparse signals. The BP recovery
with a 3-times oversampled dictionary is plotted with ∗, and
the SLPSR recovery with x’s. The lower figure shows the
recovery of the parameter perturbation. The true weights and
parameter perturbations are marked with circles.

3.2. Algorithm Convergence and Parameter Selection

Because of the nonlinear form of the constraint, it is not im-
mediately obvious that the SLPSR algorithm converges to a
first-order critical point of the PSR problem. Given minor
constraints on A(·), it can be shown [13] that there exists a
∆ > 0 such that the step of the SLPSR algorithm reduces the
objective function unless the current iterate is already a first-
order critical point. This implies that the SLPSR algorithm
will reduce the objective function until a first-order critical
point is reached. The parameters λ, ε,∆k and ω must all be
selected for the SLPSR algorithm. Choosing ω will depend
on the model. In the following section, ω represents digital
frequency and is chosen using evenly-spaced samples on the
interval {0, 2π}. The parameter ∆k is adjusted throughout
the procedure using the parameter ν. A good choice of ν is
0.5. The parameter λ corrects for the scale between changes
in parameters and changes in the signal weights. Therefore, it
is critical to choose 0 < λ ≤ ∆x

∆dω
where ∆x is an approxima-

tion of the change in the `1 norm of x possible by perturbing
the initial parameters. Similarly, ∆dω is an approximation of
the increase in the `1 norm of dω. The parameter ε should
be chosen to be slightly larger than the expected norm of the
noise term.
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Fig. 2. Algorithm recovery error as a function of frequency
oversampling. Reconstructions are done on length-16 time
signals with no added noise. The optimal weights are rounded
to the nearest frequency in the recovery and the `2 norm of the
error calculated. The SLPSR solution has minimal error at
coarse discretizations. As the oversampling factor increases,
the performance of the two algorithms becomes similar.

4. APPLICATION TO RECOVERY OF
FREQUENCY-SPARSE SIGNALS

In order to demonstrate the joint recovery of sparse vectors
and parameter perturbations, we consider the reconstruction
of frequency-sparse signals from M time-domain measure-
ments. The parameters to be estimated are the digital fre-
quencies present in the time signal and the weights are the
complex-valued amplitudes corresponding to those frequen-
cies. The elements of the parameterized model are aj(ωi) =

1√
M
∗ eı∗ωi∗(j−1), j = 1, 2, . . . ,M . Then A(ω) maps the

vector of frequencies ω ∈ RN to a matrix in CM×N where
each column is a complex sinusoid of frequency ωi and length
M .

Given an initial set of parameters ω0 and measurements
b ∈ CN , the goal is to recover a set of sparse weights x ∈ CN
and parameter perturbations dω ∈ RN . In this section, the
SLPSR algorithm is initialized using k ∗M frequency param-
eters, spaced equally between 0 and 2π, where k is the over-
sampling factor. We compare the recovery of our algorithm
with the BP solution with the sensing matrix fixed at A(ω0).

To test the recovery, 4 complex sinusoids are generated
with frequencies ω∗ uniformly randomly distributed between
0 and 2π. If generated frequencies are closer than 2π

M , we
regenerate ω∗. The real and imaginary parts of the weights
are drawn independently from uniform random distributions
on [1,−1].

For all results in this section, SLPSR subproblems are
solved with Second-order Conic Programming. The param-
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Fig. 3. SLPSR recovery of Radio Frequency data on non-
overlapping, length-64 frames of data. The initial parame-
ters are simply the DFT frequencies. The weights are plot-
ted at the corresponding recovered parameter. The algorithm
sharply recovers the transmitter amplitude and estimates the
transmitter frequency without an oversampled dictionary.

eters λ, ε were found by a search around initial estimates. All
standard BP reconstructions were performed using Second-
order Conic Programming formulations with inequality con-
straints for noisy measurements and equality constraints for
noiseless measurements.

To demonstrate recovery in under noisy conditions, com-
plex gaussian noise is added to the signal. Figure 1 demon-
strates recovery of the complex sinusoids at 10dB SNR. Re-
covery using SLPSR is not exact, but still quite reasonable.
Interestingly, the reconstruction with standard BP techniques
using a 3-times oversampled dictionary demonstrate odd re-
covery artifacts with the left-most sinusoid. The parameter
perturbations are able to recover the perturbation necessary
to recover the unknown frequency patterns to within a small
error despite the coarse sampling grid.

To explore the difference between the SLPSR formulation
and BP further, 50 examples of noiseless time signals were
generated as described above. The SLPSR recovery is com-
pared with BP recovery for different oversampling factors.
Figure 2 shows the mean 2-norm error between the optimal
weights and the recovered sparse signal. The optimal weights
are rounded to the nearest estimated frequency in the sparse
signal. Our technique recovers the optimal weights with very
low error at coarse discretizations. As the oversampling factor
increases, both SLPSR and CS recovery demonstrate similar
error. This result demonstrates that SLPSR is capable of esti-
mating frequency sparse signals from coarse discretizations.

Finally, we apply our nonlinear sparse recovery algorithm
to radio-frequency data, specifically the HF spectrum. The
data was downconverted from 7.1 Mhz to complex baseband
and sampled at 250 kHz. The complex baseband data is band-
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Fig. 4. Discrete Fourier Transform of Radio frequency data
with length-64 frames of data. There is no overlap between
frames and no window was applied.

pass filtered and downsampled to extract a band of interest. In
this band, there are multiple transmitters apparently broad-
casting morse code. The data is reconstructed using non-
overlapping blocks of 64 samples. Figure 3 shows the SLPSR
recovery using the DFT frequencies. To display the results,
the sparse weights are interpolated to the nearest display fre-
quency. Figure 4 shows the DFT reconstruction. The sparse
recovery significantly sharpens the visible peaks of the trans-
mitters. Similarly, the parameter perturbations give a more
accurate estimation of the transmitter frequencies. This result
suggests that SLPSR can successfully reconstruct real-world
signals.

5. CONCLUSIONS AND FUTURE WORK

We can jointly estimate a sparse vector and the corresponding
parameter vector using our SLPSR algorithm. This problem
formulation supports a wide variety of parameterized mea-
surement models and is more general than previous recov-
ery methods for CS with perturbed models. This scheme can
estimate both the amplitudes and the frequencies present in
frequency-sparse data. Critically, the SLPSR approach can re-
cover frequency-sparse signals from coarse initial discretiza-
tions. The experiments with Radio Frequency data suggest
that this recovery is more robust than highly oversampled BP
recoveries while still providing accurate parameter estimates.

Moving forward, it is necessary to explore the resolution
limits of this technique. This recovery algorithm also has
interesting implications for sequential recovery problems or
online dictionary learning with parameterized models. By se-
quentially updating the parameters, we can preform online
tracking of the dictionary.
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