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ABSTRACT
We present the first deterministic measurement matrix con-
struction with an order-optimal number of rows for sparse sig-
nal reconstruction. This improves the measurements required
in prior constructions and addresses a known open problem
in the theory of sparse signal recovery. Our construction uses
adjacency matrices of bipartite graphs that have large girth.
The main result is that girth (the length of the shortest cycle
in the graph) can be used as a certificate that a measurement
matrix can recover almost all sparse signals. Specifically, our
matrices guarantee recovery “for-each” sparse signal under
basis pursuit. Our techniques are coding theoretic and rely on
a recent connection of compressed sensing to LP relaxations
for channel decoding.

1. INTRODUCTION

Consider m linear measurements of an unknown vector x ∈
Rn:

A · x = y,

where A is a real-valued matrix of sizem×n, called the mea-
surement matrix. When m < n this is an under-determined
system of linear equations and one fundamental problem in-
volves recovering x assuming that it is also k-sparse, i.e. it
has k or less non-zero entries. Recent breakthrough re-
sults [1–3] showed that it is possible to construct measure-
ment matrices with m = O(k log(n/k)) rows that recover
k-sparse signals exactly in polynomial time. This scaling
of m is also optimal, as discussed in [4, 5]. These results
rely on randomized matrix constructions and establish that
the optimal number of measurements will be sufficient with
high probability over the choice of the matrix and/or the sig-
nal. Random matrices generated by various distributions are
known to work well with high probability, but in a real system
one needs to implement a specific matrix realization. The re-
lated issues of deterministically creating “good” matrices or
efficiently checking the performance of a random matrix real-
ization are therefore important. One can rely on simulations,
but a theoretical guarantee for deterministic measurement
matrices is naturally desired.

Unfortunately, the required properties of Restricted Isom-
etry Property (RIP) [1], Nullspace [6, 7], and high expansion
(expansion quality ε < 1/6) have no known ways to be deter-
ministically constructed or efficiently checked. There are sev-
eral explicit constructions of measurement matrices (e.g. [8–
10]) which, however, require a slightly sub-optimal number of
measurements (e.g. m growing super-linearly as a function of
n for k = p·n). This is closely related to constructing optimal
deterministic measurement matrices that have RIP. As is well
known, RIP is sufficient to imply recovery of sparse signals,
but not necessary. The construction of deterministic measure-
ment matrices with m = Θ(n log(n/k)) rows that have RIP
is a well-known open problem in sparse approximation the-
ory. The current state of the art is from [10] which, however,
remains slightly sub-optimal.

In our recent prior work [11] we constructed explicit ma-
trices for the linear sparsity regime (when k = Θ(n)). In
this paper we extend this machinery for any k, constructing
the first known family of deterministic matrices with m =
Θ(k log(n/k)) measurements that recover k-sparse signals.
Our result is a ‘for-each’ signal guarantee [4]. This means
that we have a fixed deterministic matrix and show the recov-
ery of the sparse signal with high probability over the support
of the signal. The recovery algorithm used is the basis pur-
suit linear program. To the best of our knowledge, this is the
first deterministic construction with an order-optimal number
of rows.

Note that we do not show that our matrices have RIP
and hence do not resolve the deterministic RIP open prob-
lem. Our matrices recover sparse signals because they have
the Nullspace condition, a condition that is known to be nec-
essary and sufficient for recovery. Our techniques are coding-
theoretic and rely on recent developments that connect the
channel decoding LP relaxation by Feldman et al. [12] to
compressed sensing [13]. We rely on a primal-based density
evolution technique initiated by Koetter and Vontobel [14]
and analytically strengthened by Arora et al. [15]. This im-
portant work established the best-known finite-length thresh-
old results for LDPC codes under LP decoding. It is the trans-
lation of this method to the real-valued compressed sensing
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recovery problem via [13] that allows us to obtain our result.
We note that even though our analysis involves a rigor-

ous density evolution argument, our decoder is always the
basis pursuit linear relaxation which is substantially differ-
ent from the related work on message-passing algorithms for
compressed sensing [16, 17].

1.1. Our contribution

Our main result is the construction of deterministic measure-
ment matrices with an optimal number of rows.

Theorem 1 For any sparsity k, construct an m× n zero-one
measurement matrix with m = Θ(k log(n/k)) using the Pro-
gressive Edge Growth (PEG) algorithm [18] using the de-
grees of (5). Assume the signal support is chosen uniformly
among the

(
n
k

)
possible choices. Under basis pursuit decod-

ing, these matrices recover the unknown signal with probabil-
ity at least 1− 1/n.

In the low-sparsity regime, it is possible to obtain recovery
of all possible supports. Specifically, if k = O(log(n)), our
construction has a ‘for-all’ signal guarantee.

Theorem 2 The optimal measurement matrices designed by
our construction, recover all k-sparse signals under basis
pursuit when k = O(log(n)).

Due to space constraints we omit several proofs which can
be found in the full manuscript [19].

2. BACKGROUND AND PRELIMINARIES

We start with some background material. We introduce the
noiseless compressed sensing problem and basis pursuit de-
coding. Then, we mention the finite field channel coding
problem and its relaxation. Finally, we discuss the LP de-
coding performance guarantee of [15].

2.1. Compressed sensing preliminaries

The simplest noiseless compressed sensing (CS) problem for
exactly sparse signals consists of recovering the sparsest real
vector x′ of a given length n, i.e., the vector with minimum `0
norm, from a set of m real-valued measurements y, given by
A · x′ = y; As is well-known, `0 minimization is NP-hard,
and one can relax the minimization by replacing the `0 norm
with `1. Specifically,

CS-LPD: minimize ‖x′‖1
subject to A · x′ = y.

This LP relaxation is also known as basis pursuit. A funda-
mental question in compressed sensing is under what condi-
tions the solution given by CS-LPD equals (or is very close
to, in the case of approximately sparse signals) the solution

given by `0 norm minimization, i.e., the LP relaxation is tight.
There has been a substantial amount of work in this area, see
e.g. [1–4, 6, 7].

One sufficient way to certify that a given measurement
matrix is “good” is through the Restricted Isometry Property
(RIP), which guarantees that the LP relaxation will be tight
for all k-sparse vectors x and further the recovery will be ro-
bust to approximate sparsity [1,2]. However, RIP condition is
not a complete characterization of the LP relaxation of “good”
measurement matrices (see, e.g., [20]). In this paper we rely
on the null-space characterization (see, e.g., [7, 21]) instead,
that gives a necessary and sufficient condition for a matrix to
be “good”.

Definition 1 Let S ⊂ {1, . . . , n}, and let C > 0. We say
that A has the nullspace property NSP≤R (S, C), and write
A ∈ NSP≤R (S, C), if

C · ‖νS‖1 ≤ ‖νS‖1, for all ν ∈ N (A).

where for a vector ν and index set S, we denote by νS the sub-
vector obtained by extracting the components of ν indexed by
S. Further, We say that A has the strict nullspace property
NSP<

R (S, C) and write A ∈ NSP<
R (S, C), if

C · ‖νS‖1 < ‖νS‖1, for all ν ∈ N (A) \ {0}.

For |S| ≤ k, observe that the requirement is for vectors in the
nullspace of A to have their `1 mass spread in substantially
more than k coordinates. In fact, it can be shown that for C >
1, at least 2k coordinates must be non-zero. In this paper,
however, we focus on the case C = 1 and leave the case
C > 1 as a future direction. The following theorem, adapted
from [22] (Proposition 2) explicitly states the tightness of the
LP-relaxation under nullspace property.

Theorem 3 Let A be a measurement matrix. Further, as-
sume that A · x = y and that x has at most k nonzero el-
ements, i.e., ‖x‖0 ≤ k. Then the estimate x′ produced by
CS-LPD will equal the estimate x′ produced by `0 minimiza-
tion if A ∈ NSP<

R (S, C).

2.2. Channel coding preliminaries

A linear binary code C of length n is defined by an m × n
parity-check matrix H, i.e., C , {c ∈ Fn

2 |H · c = 0}. We
define the set of codeword indices I , I(H) , {1, . . . , n},
the set of check indices J , J (H) , {1, . . . ,m}, the set of
check indices that involves the i-th codeword position Ji ,
Ji(H) , {j ∈ J |[H]j,i = 1}, and the set of codeword
positions that are involved in the j-th check Ij , Ij(H) ,
{i ∈ I|[H]j,i = 1}. The degree of a variable node i and
a check node j are |Ji| and |Ij |, respectively. For a regular
code |Ji| = d` and |Ij | = dr for all i ∈ I and j ∈ J .
We denote such a code by (d`, dr)-regular code. Throughout,
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we assume dr, d` ≥ 3. The relation between the degrees and
number of rows and columns is controlled by the so-called
hand-shaking lemma:

HS: m · dr = n · d`.

If a codeword c ∈ C is transmitted through a binary-input
memoryless channel with transition probability measure
P(r|c), and an output sequence r is received, then one can
potentially decode c by solving for the maximum likelihood
codeword in C, namely

CC-MLD: minimize λT c′

subject to c′ ∈ conv(C)),

where λ is the likelihood vector with components λi =

log(P(ri|ci=0)
P(ri|ci=1) ), and conv(C) is the convex hull of all code-

words of C in Rn. CC-MLD is NP-hard and therefore an
efficient description of the exact codeword polytope is very
unlikely to exist.

The channel decoding LP relaxation [12] is:

CC-LPD: minimize λT c′

subject to c′ ∈ P(H),

where P = P(H) is known as the fundamental polytope [12,
14]. The fundamental polytope is compactly described as fol-
lows: If hj

T is the j-th row of H, then

P = ∩1≤j≤mconv(Cj), (1)

where Cj = {c ∈ Fn | hj
T c = 0 mod 2}. Due to the sym-

metries of the fundamental polytope [12] we can focus on the
cone around the all-zeros codeword without loss of generality.
Given the parity check matrix H, its fundamental cone K(H)
is defined as the smallest cone in Rn that contains P(H)

Given the fundamental cone of a code C, we define the
following property.

Definition 2 Let S ⊂ {1, 2, · · · , n} and C ≥ 1 be fixed. A
code C with parity check matrix H is said to have the funda-
mental cone property FCP(S, C) if for every w ∈ K(H) the
following holds:

C · ‖wS‖1 < ‖wS‖1. (2)

Lemma 1 Let H be a parity-check matrix of a code C and
let S ⊂ I(H) be a particular set of coordinate indices that
are flipped by a binary symmetric channel (BSC) with cross-
over probability p > 0. The solution of CC-LPD equals the
codeword that was sent if and only if H has the FCP(S, 1).

The proof can be found in [23].

2.3. LP-decoding performance guarantee

Arora et al. [15] introduced the following best known perfor-
mance guarantee for the channel decoding LP:

Theorem 4 Let C be a regular (d`, dr)-LDPC code whose
corresponding bipartite graph has girth equal to g. Further,
let 0 ≤ p ≤ 1/2 be the probability of a bit flip in BSC, and S
be the random set of flipped bits. If

γ = mint≥0 Γ(t, p, dr, d`) < 1,

where
Γ(t, p, dr, d`) =

(
(1− p)dr−1e−t + (1− (1− p)dr−1)et

)
· ((dr − 1) · ((1− p)e−t + pet))

1/(d`−2)

(3)

Then with probability at least

Prob(H ∈ FCP (S, 1)) ≥ 1− nγd`(d`−1)T−1−d` , (4)

where T = bg/4c, the code C corrects the error pattern S,
i.e., it has FCP(S, 1), where T is any integer T < g/4.

Note that the value γ can be derived for specific values of
p, d`, and dr. The proof can be found in [15].

Note that for the above probability to converge to one, it
is required that γ < 1 and T to be an increasing function in
n. For instance, for T = Θ(log(n) < g/4, we get the proba-
bility of error to be O(exp(−cn)) for some positive constant
c which depends on d`.

2.4. Establishing the Connection

In this section, through Lemma 2 (taken from [24]), we will
establish a bridge between LP-decoding and compressed
sensing via which we later import the guarantees for LP
decoding into compressed sensing.

Lemma 2 (Lemma 6 in [24]): Let A be a zero-one measure-
ment matrix. Further, let HA denote the same matrix A as
the parity check matrix of a code over GF(2). Then

ν ∈ N (A)⇒ |ν| ∈ K(HA),

where |ν| is the vector obtained by taking —·— of the com-
ponents of ν. Note that the bridge established in [23] and
through Lemma 2 connects CC-LPD of the binary linear
channel code and CS- LPD based on a zero-one measure-
ment matrix over reals by viewing this binary parity-check
matrix as a measurement matrix. This connection allows
the translation of performance guarantees from one setup to
the other. Using this bridge, we can show that parity-check
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matrices of “good” channel codes can be used as provably
“good” measurement matrices under basis pursuit.

To import the performance guarantee of [15] into com-
pressed sensing setup, we take the following steps. First
through Theorem 4, we show that the code C has the fun-
damental cone property FCP(S, 1) with probability at least
1 − nγd`(d`−1)T−1−d` . Next, through Lemma 1, we demon-
strate that C corrects the error configuration S at the output of
the BSC. Finally, by Lemma 2, we establish a connection be-
tween the properties of HA as parity check matrix (i.e. FCP
condition) and its null space properties as a measurement ma-
trix in compressed sensing. Consequently, with probability at
least 1 − nγd`(d`−1)T−1−d` the solution of CS-LPD is equal
to `0 minimization by Theorem 3.

3. ACHIEVABILITY

In this section we present our construction. That is, as men-
tioned in section 2, we build a parity-check matrix of a
(d`, dr)-regular LDPC code of length n using progressive
edge growth method discussed in [18]. As mentioned, this
code can correctly decode an output of a BSC channel with
a flip probability p with high probability because of its girth
properties. Then, based on Lemma 2, the parity-check matrix
when used as a measurement matrix can recover k-sparse
signals for k = pn with high probability.
Proof of Theorem 1: We construct a (d`, dr)-regular LDPC
code with the following number of rows and degrees using
the Progressive Edge Growth algorithm [18].

m = c · np log(1/p)

dr = cr · 1/p
d` = c` · log(1/p), (5)

where c, cr, c` are constants which must satisfy HS, i.e., c` =
c · cr.

Note that for the lower bound (4) to tend to one, we re-
quire γ < 1 and T or d` to be a growing function of n. That
is, if we require to show that there exist constants c, cr, c`,
and t for which the function Γ defined in (3) becomes less
than one for our construction.

Lemma 3 There exists c, cr, c`, and t for which the function
Γ (3) with values (5) is less than one.

The proof can be found in [19].
Note that, a reader might assume that our construction

may fail to recover sparsity regimes p for which T becomes
a constant. Let us find such instances and show that our con-
struction is able to recover them.

As mentioned, the minimum number of measurements
mmin required for recovering a k-sparse signal is np log(1/p).
Inserting mmin into HS gives dr

d`
= 1

p log(1/p) .

θ( log log(n)
n

) θ( log(n)
n

) θ( 1
log(n)

) θ( log log(n)
log(n)

) θ( 1
log log(n)

) θ(α)
p

T

θ(1)

θ( log(n)
log log(n)

)

θ( log(n)
log log log(n)

)

θ(log(n))

1

Fig. 1: The scale of the girth T against p if dr = dmin
r is used.

The progressive edge growth technique, requires the
parity-check matrix to satisfy 1 +

∑T−1
i=1 di` · dir < n. As-

suming that either d` · dr � 1 or T → ∞ we can neglect
the smaller terms, and by taking logarithm from both sides
we get T log(d` · dr) < log(n). Further, from HS we know
that for fixed n and m, dr = n

md` is an increasing function of
d`. Therefore, the minimum dr can be achieved when d` is a
constant. Let us denote this minimum dr by dmin

r , which is

dmin
r = Θ(

1

p log(1/p)
) (6)

Furthermore, increasing d` will also cause the product d` · dr
to grow. As a result, the minimum of this product is attained
at dr = dmin

r and d` equal a constant.
After inserting (6) into T log(d` · dr) < log(n), it is in-

teresting to check for which sparsity regimes T grows in n as
n → ∞. As shown in Fig. 1, for classes p = log(n)/n and
log log(n)/n, the depth T becomes a constant. Thus, a reader
might assume that our construction cannot recover sparsities
p = O(log(n)/n). Here, we discuss that this is not the case,
and our construction is indeed valid for all sparsities.

As shown in (5), for our construction d` = Θ(log(1/p)).
That is, for sublinear sparsities, since p is a decreasing func-
tion of n, d` becomes a monotonically increasing function.
Looking at the lower bound (4), it seems possible that for
γ < 1 and large enough d`, the bound converges to one with
speed higher than 1− 1/n. In the following lemma, we show
that this indeed happens and our scheme works for all sparsity
regimes.

Lemma 4 For the codes generated by progressive edge
growth technique and values (5), the lower bound on the
probability of successful decoding (4) tends to one for all
values of p ∈ (0, 1/2) including those for which T > 2 is a
constant.

The proof can be found in [19] and thus the proof of the The-
orem 1 is complete.
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