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ABSTRACT

This paper considers the problem of compressive sensing over
a finite alphabet, where the finite alphabet may be inherent to
the nature of the data or a result of quantization. We show
that there are significant benefits to analyzing the problem
while incorporating its finite alphabet nature, versus ignoring
it and employing a conventional real alphabet based toolbox.
Specifically, when the alphabet is finite, our techniques have
a lower sample complexity compared to real-valued compres-
sive sensing for low levels of sparsity, facilitate constructive
designs of sensing matrices based on coding-theoretic tech-
niques, and allow for lesser amount of data storage.

Index Terms— compressive sensing, finite alphabet.

1. INTRODUCTION

Compressive sensing has witnessed an explosion of research
and literature in recent years, finding useful applications in
diverse fields [1, 2, 3, 4]. The theory behind compressive
sensing permits the sensing and recovery of sparse high-
dimensional signals using a small number of linear measure-
ments [5, 6, 7]. There are multiple practical algorithms for
accurate recovery of real-valued sparse signals from their
linear measurements, in the presence or absence of noise
[8, 9, 10, 11, 12, 13]. From an analytical perspective, there is
a large body of literature on necessary and sufficient condi-
tions for accurate reconstruction of sparse signals.

In practice, signals are not always real-valued. For
example, opinion polls, ranking information, commodity
sales numbers, and counting data sets including arrivals at a
queue/server are inherently discrete-valued. Moreover, some
of what might otherwise be regarded as continuous-valued
data sets are conventionally “binned” into finite alphabet sets;
examples include rainfall data, sensor data and power gener-
ation data. In such cases, knowledge of the nature of alphabet
can prove to be useful, which together with the underlying
sparsity property can lead to alternate and potentially efficient
algorithms for finite alphabet compressive sensing.

In this paper, we consider a setup where the sensed infor-
mation belongs to a known finite alphabet. We treat this al-
phabet as a subset of a suitable finite field; this allows us to use
tools from algebraic coding theory to construct sensing matri-
ces and design efficient sparse signal recovery algorithms. In

this process, we establish a deeper connection between the ar-
eas of algebraic coding theory and compressive sensing than
what is currently understood in literature [14, 15].

Motivation: It is known that the recovery of sparse sig-
nals from their linear measurements in compressive sensing
reduces to solving a `0-minimization problem. An advantage
of analyzing compressive sensing in the finite field domain
is that `0-minimization is solvable in polynomial time for cer-
tain families of sensing matrices. In contrast, `0-minimization
is non-convex and NP-hard in the real-valued domain; there-
fore, its convex relaxed version, the `1-minimization problem,
is solved in its place, that gives the correct answer if the sens-
ing matrix satisfies some incoherence property like RIP. An-
other important reason for finite-valued analysis of compres-
sive sensing is storage space. Though real values are useful
analytical abstract artifacts, in practice, values must be stored
and processed in form of discrete alphabet. The amount of
storage space needed is an important area of concern for ap-
plications of compressive sensing. Our methodology not only
affords a lower sample complexity under certain settings, but
also requires lesser amount of storage space in terms of bits
of information needed for exact signal reconstruction.

We wish to emphasize that the tools we use are well-
known to the coding community; what makes it interesting is
their connection and relevance to compressive sensing. Our
main application domain is in tracking discrete-valued time-
series data; we show that our approach does not suffer from
error accumulation like real-valued compressive sensing.

Relation to Prior Work: The fact that real-valued com-
pressive sensing allows for recovery of sparse signals based
on linear measurements is reminiscent of error correction
in linear channel codes and compression by lossless source
codes over finite alphabet or fields [16, 17]. Such similari-
ties have been identified in existing literature to serve varied
goals. For example, the use of bipartite expander graphs
to design sensing matrices over reals is investigated in [18].
The connection between real-valued compressive sensing and
linear channel codes is explored in [15], by viewing sparse
signal compression as syndrome-based source coding over
real numbers and making use of linear codes over large finite
fields. The design of real-valued sensing matrices based on
LDPC codes is examined in [19] and [20]. For real-valued
compressive sensing over finite alphabet, the approaches that
have been examined include approximate message passing
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[21], recovery based on sphere decoding and semi-definite
relaxation [22]. However, an algebraic understanding of
compressive sensing, particularly over finite fields, is yet
limited, which is the main contribution of this paper.

Due to limitation of space, the proofs of the results are not
presented in this paper. The audience can refer to [23] for a
detailed version of the paper, along with the proofs.

2. SYSTEM MODEL

Notation: We use Fq to represent the finite field with q ele-
ments, where q is a prime or power of a prime. For any field
F, we use F[x] to denote the polynomial ring in x with co-
efficients from F. For n ∈ N and x ∈ Fn, we use wt(x) to
denote the number of non-zero elements in x. For x ∈ R, we
use bxc and dxe to represent its floor and ceiling values.

Given b, n, q ∈ N with b < n, and a finite alphabetA ⊆ R
with 0 ∈ A and |A| = q, we consider the following ensemble:

S = {x = (x1, x2, . . . , xn) ∈ An : wt(x) ≤ b}.

This ensemble represents the space of n-dimensional signals
that are at most b-sparse with entries from A. We assume
that q is a prime number or its power, and consider a bijective
mapping φ : A → Fq with the restriction φ(0) = 0, i.e.,
0 ∈ R gets mapped as the zero of Fq . This allows us to
interpret A as Fq and we define the following set of vectors:

Sq = {x = (φ(z1), . . . , φ(zn)) : (z1, . . . , zn) ∈ S}.

By construction, the vectors in Sq are at most b-sparse.
We develop a framework for efficient compression of any

x ∈ Sq using linear measurements generated by the process

y = Ax + n, (1)

where A ∈ Fm×nq is the sensing matrix, n ∈ Fmq is the noise
vector and y ∈ Fmq is the vector of measurements. Note that
y can be thought of as a noisy compressed version of x. The
overall goal of the problem setting is to design A such that x
can be recovered accurately and efficiently from y.

Given a uniform distribution over the vectors in Sq , source
coding theorem [24] states that the number of measurements
required to characterize x ∈ Sq is at least log2 |Sq| =
Ω(b log(n/b)) for b < n/2. Here, we provide schemes
for designing m = Θ(bdlogq ne) measurements to recover x.
This matches the lower bound on number of measurements,
in order sense, for the case b = O(nα), α ∈ [0, 1).

Field Lifting: A critical algebraic tool that we utilize for
designing the sensing matrices is field lifting. The use of this
concept allows one to embed the existing system setup in a
high-dimensional space that offer more degrees of freedom.
The concept is briefly described as follows; its detailed de-
scription as well as that of the relevant algebraic aspects is
given in [23]. Given s ∈ N, we consider a primitive polyno-
mial p(x) of degree s over Fq and its root α, that is a primitive

element of Fqs . We assume that the number of measurements
satisfies m = m′s, and define matrix mapping φs : Fm×nq →
Fm
′×n

qs and vector mapping ψs : Fmq → Fm′qs . φs maps
C = [cij ] ∈ Fm×nq to φs(C) = [c′kl] ∈ Fm

′×n
qs , where c′kl =∑s−1

t=0 c(k−1)s+t+1,lα
t. Likewise, ψs maps c = [ci] ∈ Fmq to

ψs(c) = [c′k] ∈ Fm′qs , where c′k =
∑s−1
t=0 c(k−1)s+t+1α

t. Note
that fixing p(x) and α make these mappings bijective.

3. NOISELESS MEASUREMENTS

In this section, we analyze the problem of recovering x ∈ Sq
in absence of noise, i.e., n = 0. Note that this situation re-
sembles the process of syndrome decoding in linear codes,
where x,y and A play the roles of error vector, syndrome
vector and parity check matrix of the linear code respectively
[25]. We exploit this idea for designing A and algorithms
for recovering x from y. We refer to a linear code C as an
[N,K,D]q code (N,K,D ∈ N and q is a prime or its power)
if the code alphabet is Fq , codeword length is N , number
of codewords is qK and Hamming distance between any two
codewords is at least D. Then the following theorem holds:

Theorem 3.1. Given m = m′s, it is possible to exactly re-
cover x ∈ Sq from y if φs(A) is the parity check matrix of a
[n, n−m′, d]qs linear code with n > m′, d > 2b.

Designing φs(A) as the parity check matrix of a suitably
structured Reed-Solomon code gives the following corollary:

Corollary 3.2. Given m = 2bs and s ≥ dlogq ne, it is pos-
sible to exactly recover x ∈ Sq from y using O(nbs2) field
operations in Fq if n > 2b and φs(A) is the parity check
matrix of a [n, n− 2b, 2b+ 1]qs Reed-Solomon code.

In general, any family of linear codes that admits a poly-
nomial time syndrome decoding algorithm can be used for
constructing sensing matrices, in place of Reed-Solomon
codes. Examples include BCH codes, LDGM codes and
special classes of LDPC codes based on expanders.

Number of measurements: Corollary 3.2 suggests that
one can design m = 2bdlogq ne measurements with the
recovery algorithm requiring O(nb(log n)2) field opera-
tions in Fq . This scaling of m is order-wise optimal for
b = O(nα), α ∈ [0, 1), with respect to the lower bound
of Ω(b log(n/b)). A sufficient condition that ensures `1-
minimization leads to accurate recovery in real-valued com-
pressive sensing is that the sensing matrix satisfies RIP of
order 2b with parameter δ2b < (

√
2 − 1) [10]. A convenient

way of generating RIP matrices is by choosing its entries
from a sub-Gaussian distribution in an i.i.d. fashion. Given
δ ∈ (

√
2 − 1, 1) and arbitrary κ1 > 0, if the number of

measurements satisfies m ≥ 2κ1b loge(n/2b), then exact
recovery is possible using `1-minimization with probability
≥ 1 − 2 exp(−κ2m), where κ2 depends on δ, κ1. There-
fore, for b ≤ 0.5q−(κ1 loge q)

−1

n1−(κ1 loge q)
−1

(i.e., sparsity
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level is below some threshold) the number of measurements
required for the finite field (or finite alphabet) framework is
smaller compared to real-valued compressive sensing.

Storage space: The storage space needed for the mea-
surements (i.e., y) is at most 2bdlogq ne log2 q bits, that lies
between 2b log2 n and 2b log2 n+ 2b log2 q bits. The storage
space taken by real-values is in theory, infinite, and in prac-
tice, with j-bit quantization, is linear in j. For real-valued
compressive sensing and same number of measurements, this
amounts to 2jbdlogq ne bits of storage space. Note that we
have j > log2 q, as at least log2 q bits are needed to resolve
among the elements in a finite alphabet of size q. This gives
storage space of at least 2bdlogq ne log2 q bits. Therefore, the
storage requirement for the finite field framework is smaller
compared to the real-valued framework if j > log2 q.

Thus, the algebraic approach offers benefits in terms of
number of measurements as well as storage space (in bits),
provided the sparsity levels are below some threshold.

4. NOISY MEASUREMENTS

In this section, we analyze the problem of recovering x ∈ Sq
in presence of measurement noise. Here, we recover x from y
in two steps. First, we eliminate the effect of errors introduced
by n, using error correction capability of linear codes. Next,
we retrieve x as described in Section 3. Due to limited space,
we consider only the probabilistic noise model in this paper,
the analysis for worst-case noise is presented in [23].

The probabilistic noise model is widely used for model-
ing errors resulting from transmissions across communica-
tion channels or networks. For the sake of simplicity, we
assume that n is generated by m independent uses of a q-
ary symmetric channel with crossover probability λ ∈ (0, 1−
q−1); similar analysis can be performed for noise generated
by general probability distributions. In other words, if n =
[n1 n2 · · · nm]T , ni has the probability distribution P (ni =
a) = λ/(q − 1) for a ∈ Fq\{0} and 1− λ for a = 0.

We say that a linear code C achieves probability of error
of at most Pe over a channel if maxc∈C Pe(c) ≤ Pe, where
Pe(c) refers to the probability that codeword c is decoded
erroneously by a nearest neighbor codeword decoder, condi-
tioned on the fact that c was originally sent across the channel.
We also define Hq(x) , −x logq x− (1− x) logq(1− x) +
x logq(q − 1), x ∈ (0, 1). Then the following theorem holds:

Theorem 4.1. Given λ ∈ (0, 1− q−1), m = cm′, m′ ≥ m′′s
and c > 1/(1−Hq(λ)), it is possible to exactly recover x ∈
Sq from y with probability ≥ (1 − Pe) if A = GA′, where
G is the generator matrix of a [m,m′, d]q linear code that
achieves probability of error of at most Pe over a symmetric
channel with crossover probability λ, and some set of m′′s
rows of A′ forms A′′ such that φs(A′′) is the parity check
matrix of a [n, n−m′′, d′]qs linear code with d′ > 2b.

A′ can be constructed to have A′′ as its sub-matrix,

with φs(A′′) as the parity check matrix of a suitable Reed-
Solomon code. One family of linear codes that achieve small
error probabilities over q-ary symmetric channel is concate-
nated codes [25, 26]. For example, given λ ∈ (0, 1−q−1), ε ∈
(0, 1 −Hq(λ)), ρ ∈ (0, 1) and large enough t ∈ N, it is pos-
sible to design a concatenated [N,K,D]q linear code with
N = tqbεtc and K = bεtcdρqbεtce, whose decoding algo-
rithm requires O(N2 logN) operations in Fq and reals [25].
Furthermore, the code achieves probability of error of at most
q−c(ε,ρ)N over the symmetric channel with crossover proba-
bility λ, where c(ε, ρ) is a positive constant that depends on
q, ε, ρ. We refer to this linear code as Ccon(t, ε, ρ). Designing
G to be its generator matrix results in the following corollary:

Corollary 4.2. Given λ ∈ (0, 1−q−1), ρ ∈ (0, 1), ε ∈ (0, 1−
Hq(λ)) and s ≥ dlogq ne, it is possible to exactly recover
x ∈ Sq from y with probability≥ (1−q−cbs) (c > 0 depends
only on q, ε, ρ) for large enough values of b, n using O((n +
b log(bs))bs2) operations in Fq,R if n > 2b and A = GA′,
where G is the generator matrix of code Ccon(dt∗e, ε, ρ), t∗ ∈
R being the solution to ερxqεx = 4qbs, and some set of 2bs
rows of A′ forms A′′ such that φs(A′′) is the parity check
matrix of a [n, n− 2b, 2b+ 1]qs Reed-Solomon code.

Corollary 4.2 suggests one can design m = Θ(bdlogq ne)
measurements and the recovery process requires O((n +
b log b+ b log log n)b(log n)2) field operations in Fq,R. This
scaling ofm is order-wise optimal for b = O(nα), α ∈ [0, 1),
with respect to the lower bound of Ω(b log(n/b)). Note that
there are no theoretical guarantees for real-valued compress-
ing sensing with this noise model; most of the guarantees are
designed for Gaussian noise or `2-norm bounded noise.

5. SIMULATION RESULTS

In this section, we present simulation results showing the util-
ity of our approach (detailed description given in [23]).

Synthetic sparse data: We show the effect of sparsity
levels on our approach vs. real-valued compressive sensing
using synthetically generated sparse data. For this, we choose
n = 1024 and sparsity levels b = dnre, r = 0.2, 0.4, 0.6, 0.8.
We set m = 2bθbcdlogq ne, where q = 256 and θ is varied
from 0.2 to 3. The details of constructing x, sensing matrices
for algebraic and real-valued approaches, definitions of error-
free events and probability of recovery are given in [23].

Figure 1a shows the plot of θ vs. probability of recov-
ery. The fact that the number of measurements required for
the algebraic approach is lesser compared to that of real-
valued compressive sensing for sparsity levels b = dnre,
r = 0.2, 0.4, 0.6, corroborates the remark made about sample
complexity in Section 3. This also implies lesser storage
space for the measurement vector and sensing matrix for
these situations with low sparsity levels, since every symbol
in the field Fq can be represented in log2 q = 8 bits whereas
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Fig. 1: Simulation results for (a),(b) synthetic sparse data and (c),(d) discrete-valued time series.

reals are potentially assigned more bits (assigning lesser bits
to reals would give quantization error as overhead).

Since m = 2bdlogq ne for the algebraic approach, this
implies that the number of measurements required decreases
as the field size increases. We demonstrate this relationship
in Figure 1b, where we consider q = 2i, i = 1, 2, . . . , 16 with
n = 2048, 4096 and b = dnre, r = 0.2, 0.4, 0.6, 0.8. One
can observe that the number of measurements saturates to 2b
for large enough q, the lower bound on the number of samples
for differentiating between any two b-sparse vectors.

Tracking discrete-valued time series: The problem of
the tracking time series is an important one and has been
well-studied in literature [27, 28]. In many situations, the
time-series is discrete-valued, for example, time-series data
that corresponds to the backlog in queues, and the changes
between two successive time instances have a sparse struc-
ture, such as sequence of video frames and time series from
human motion recognition. As such, the concept of compres-
sive sensing can be used - the idea is to compress the sparse
changes so as to minimize the storage requirement.

As an example, consider a discrete-valued time series
(z1, z2, . . . , zt), where zi ∈ An and A ⊂ R is the discrete
alphabet, with the property wt(ei) ≤ b, ei , zi+1 − zi,
i = 1, 2, . . . , t − 1, and b << n. Then one approach is
to use real-valued compressive sensing – consider a sens-
ing matrix A ∈ Rm×n, satisfying some incoherence prop-
erty and compress/track the discrete-valued time series as
(z1,Ae1, . . . ,Aet−1). The decompression algorithm com-
prises of recovering e1, e2, . . . , et−1 using `1-minimization
and getting the estimate of the discrete time series. Another
approach is the algebraic one – interpret A as finite field Fq
or its subset and perform compression using the methodology
described in Section 3. Next, we provide simulation results
for the tracking error of a synthetic quantized time series and
a promotion data based discrete-valued time series.

We consider n = 1024, t = 500, q = 256 and spar-
sity levels b = dnre, r = 0.2, 0.4, 0.6. We choose m =
2bdlogq ne, where q = 256. The details of constructing the
synthetic real-valued time series and quantized time-series
from it, sensing matrices for algebraic and real-valued ap-

proaches, and definitions of tracking error are given in [23].
Figure 1c shows the plot for tracking error vs. time index
for different sparsity levels. Note that this increasing nature
of tracking error for compressive sensing over reals is due
to error propagation in the estimates of the time series; this
includes both the quantization error as well as error in even
determining the sparsity patterns of the changes in the time-
series vector variable. Also, the tracking error reduces with
increasing b, as then m becomes larger and closer to the op-
timal number of measurements required for real-valued com-
pressive sensing for error-free recovery of the sparse changes
in the time-series. In contrast, we have exact recovery for the
sparse changes in the algebraic approach, so the tracking error
at any time only comprises of the quantization error.

The promotional data time-series comes from [29]; we
use the ‘promotions.dat’ file that contains a time-series with
n = 1000, t = 1000 over three years. The entries in the
time series come from {0, 1}. We perform the same manner
of tracking as for the synthetic time series for all three years,
the only difference being that the promotional time series is
already discrete-valued, so there is no quantization error. We
set m = 2bdlogq ne, q = 1024. Then the tracking error is
always zero for the algebraic approach. Figure 1d shows the
tracking errors with increasing time index. Note that for com-
pressive sensing over reals it increases with time due to er-
ror propagation. Also, the algebraic approach requires lesser
storage space if a real is assigned ≥ log2 q = 10 bits.

6. CONCLUSION

In this paper, we develop an algebraic framework for com-
pressive sensing over finite alphabet; we provide constructive
approaches for designing sensing matrices and polynomial-
time-complexity algorithms for sparse source recovery, all
while maintaining optimality in terms of sample complexity.
Furthermore, we demonstrate that our approach outperforms
real-valued compressive sensing in terms of sample complex-
ity and storage. In terms of utility, compressive sensing over
finite alphabet proves to be a natural fit for the purpose of
compressing/tracking discrete-valued time-series data.
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