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ABSTRACT

In many applications in signal and image processing, communica-
tions, and system identification, one aims to recover a signal that has
a simple representation in a given basis or frame. Key devices for
obtaining such representations are objects called atoms, and func-
tions called atomic norms. These concepts unify the idea of simple
representations across several known applications, and motivate ex-
tensions to new problem classes of interest. In important special
cases, fast and efficient algorithms are available to solve the recon-
struction problems, but an approach that works well for the general
atomic-norm paradigm has not been forthcoming to date. In this pa-
per, we combine a greedy selection scheme with a backward step
that sparsifies the basis by removing less significant elements that
were included at earlier iterations. We show that the overall scheme
achieves the same convergence rate as the forward greedy scheme
alone, provided that backward steps are taken only when they do
not degrade the solution quality too badly. Finally, we validate our
method by describing applications to three problems of interest.

Index Terms— Algorithms, Atomic Norm, Greedy Approxima-
tion, Compressed Sensing

1. INTRODUCTION

Minimization of a convex loss function with a constraint on the “sim-
plicity” of the solution has found widespread applications in com-
munications, learning, image processing, genetics, and other fields.
While obvious formulations of the simplicity requirement are in-
tractable, there are sometimes tractable, convex formulations avail-
able. The notion of simplicity varies across applications: For many
applications in signal and image processing, we wish the recovered
high-dimensional signal to be sparse. In matrix-completion prob-
lems that arise in recommendation systems, we seek low-rank solu-
tion matrices. Convex relaxations of the sparsity and low-rank con-
straints [1, 2, 3] lead to tractable `1- and nuclear-norm-constrained
optimization programs, respectively. In image processing and mul-
titask learning applications, the optimal vector/image is known to be
group sparse in a certain representation, leading to formulations as
group-lasso-norm constrained problems (with or without overlap be-
tween the groups) [4, 5, 6]. In applications involving finite rates of
innovation [7], signals are known to lie in a union of subspaces. The
group lasso norm can be modified to yield a penalty that constrains
the target variables to lie in such unions [8].

Since these formulations differ so markedly across applications,
Chandrasekaran et al. [9] study the question of whether there is a
principled, unified way to derive the best convex heuristic for differ-
ent notions of simplicity. The notions of atoms and atomic norms
provides such a framework. We define atomic norms and several of
their applications in Section 2.

While atomic norms lead to good heuristics for formulating re-
construction problems, efficient algorithms to solve these optimiza-
tion formulations remains a challenge. For special cases such as
`1-constrained [10, 11, 12] and nuclear-norm-constrained [6, 13, 14]
formulations, highly efficient special-purpose algorithms are known.
To extend such frameworks to general atomic norms, the authors
of [15] introduced a greedy method based on the Frank-Wolfe al-
gorithm [16]. The algorithm employs a forward greedy scheme, in
which a single atom is added to the basis at each iteration. This ap-
proach suffers the drawback that errors made in previous iterations
cannot be quickly erased in subsequent iterations, and that atoms,
once added to the basis, cannot be removed or replaced by more
suitable choices. The alternative approach of backward greedy se-
lection [17], which starts with the full atomic set and removes an
atom from the model at each iteration, is often impractical, since the
full set of atoms is very large or uncountably infinite.

In this paper, we propose a Forward-Backward scheme that adds
atoms greedily in the same manner as in [15], while allowing atoms
to be purged later if their contribution to the observations is super-
seded by atoms selected later in the process. Our scheme also admits
flexibility in adjusting the current iterate, for example, by sparsify-
ing its representation in terms of the current basis. Our algorithm
enjoys similar convergence properties to the method of [15] (as we
can show by making minor adjustments to the analysis of that pa-
per) while producing solutions that are significantly sparser, as can
be seen from our experiments.

We apply our method to a standard compressed sensing formula-
tion and to two other problems of current interest: moment problems
and latent group lasso. In moment problems [18, 19], which arise in
applications such as radar, communications, seismology, and sen-
sor arrays, one aims to recover frequency components of a received
sampled signal. The possible frequencies lie on a continuum, mak-
ing the atomic set uncountably infinite. As shown in [18], the cor-
responding atomic norm problem can be reformulated as a semidefi-
nite program (SDP) in certain cases. However, general-purpose SDP
solvers are expensive for this problem, and impractical for large in-
stances. Our forward-backward method, coupled with a “repeated
random discretization” strategy, recovers unknown frequency com-
ponents from the signal with high accuracy and reasonable compu-
tational efficiency. Our approach has the additional advantage that it
does not rely on rationality of the sampling times.

The latent group lasso [20] arises from applications in genomics,
image processing, and machine learning [4, 6]. It is shown in [20, 8]
that the latent group lasso penalty, which is a sum of `2 norms of
overlapping groups of variables, can be modeled as an atomic norm.
However, solving the problem involves replication of the variables
and solution of a higher dimensional problem [6], which can become
expensive when the amount of overlap between groups is significant.
When applied to this problem, our forward-backward algorithm does
not require variable replication and can be implemented efficiently.
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2. NOTATIONS AND PROBLEM SETUP

We use boldface letters x,y etc. to denote variables in the problem.
For example, in the case of sparse signal recovery (or group sparse),
x ∈ Rp represents a vector. In matrix completion applications, x ∈
Rm×n represents a matrix.

We assume the existence of a known atomic set A, containing
elements that lie in the same space as the problem variables. The
atoms a ∈ A form the basic building blocks of signals of interest.
A variable x may be representable as a conic combination of atoms
a ∈ At in a subset At ⊂ A, as follows:

x =
∑
a∈At

caa, with ca ≥ 0 for all a ∈ At, (1)

where the ca are scalar coefficients. We write x ∈ co(At, τ) for
some given τ ≥ 0, if it is possible to represent the vector x in the
form (1), with the additional constraint∑

a∈At

ca ≤ τ. (2)

Given an x ∈ Rp and an atomic set, we define the atomic norm:

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0 ∀a ∈ A

}
, (3)

that is, ‖x‖A is derived from the representation of x in terms of the
full set A of atoms with the smallest coefficient sum. Note that the
coefficient sum (2) is an upper bound on the atomic norm ‖x‖A;
different coefficients or a different subset of atoms may allow x to
be expressed using a smaller sum of coefficients.

In a typical linear inverse problem, we look to recover a simple
representation of x (as a conic combination of a modest number of
atoms) from linear measurements of the form y = Φx. A provably
effective way to obtain a simple x is to place a constraint on its
atomic norm; see [9]. We formulate this problem using an `2 loss
function as follows:

min
x

f(x) :=
1

2
‖y −Φx‖22 subject to ‖x‖A ≤ τ. (4)

The rest of the paper is organized as follows. In Section 3, we
describe our forward-backward algorithm to solve (4), and analyze
its convergence properties in Section 4, proving a 1/T convergence
rate. In Section 5, we describe various experiments on real and sim-
ulated data. We conclude and discuss future research in Section 6.

3. ALGORITHM

The forward step of our algorithm below chooses a new atom and
adjusts the coefficients to the basis using the same strategy as in [15].
The backward step removes one of the existing basis elements if the
value of f is not degraded by more than a certain fraction (less than
1) of the improvement gained during the forward step. All iterates
remain feasible with respect to the constraint ‖x‖A ≤ τ .

We give more detail on the crucial steps. Step 9 allows the vec-
tor x̂t+1 obtained from the atom selection and coefficient updating
procedure of [15] to be replaced by another vector x̃t+1 that is ex-
pressible in terms of the same basis At+1, satisfies atomic-norm
constraint, and has a lower function value. This step is optional;
it suffices for the analysis to simply set x̃t+1 to the value x̂t+1 ob-
tained in Step 8. Alternatively, we can take some steps of a descent
algorithm, such as projected gradient [21], starting from this point.

Algorithm 1 Forward Backward algorithm for Atomic Norm Mini-
mization

1: Input: Characterization of A, Bound τ , Backward Parameter
0 < η < 1;

2: Initialize Choose some a0 ∈ A, set x0 = τa0, setA0 = {a0},
set t← 0;

3: repeat
4: FORWARD STEP
5: a′ ← arg mina∈A〈∇f(xt),a〉;
6: At+1 ← At ∪ a′;
7: γt+1 ← arg minγ∈[0,1] f(xt + γ(τa′ − xt));
8: x̂t+1 ← xt + γt+1(τa′ − xt);
9: Find any x̃t+1 ∈ co(At+1, τ) with f(x̃t+1) ≤ f(x̂t+1);

10: Express x̃t+1 =
∑

a∈At+1
caa;

11: BACKWARD STEP
12: Find the term ca′′a′′ such that f(x̃t+1 − caa) is minimized

over all a ∈ At+1;
13: Find any x̄t+1 ∈ co(At+1 \ a′′, τ) such that f(x̄t+1) ≤

f(xt+1 − ca′′a′′);
14: if [f(x̄t+1)− f(x̃t+1)] ≤ η[f(xt)− f(x̃t+1)] then
15: At+1 ← At+1 \ a′′;
16: xt+1 ← x̄t+1;
17: Express xt+1 =

∑
a∈At+1

caa;
18: else
19: xt+1 ← x̃t+1;
20: end if
21: t← t+ 1;
22: until convergence

Similarly, Step 13 allows the sparsified iterate xt+1− ca′′a′′ to
be replaced by any point x̄t+1 with the same basis set that satisfies
the atomic-norm constraint and has a lower function value. Again,
this step is optional; we can simply set x̄t+1 ← xt+1 − ca′′a′′. Al-
ternatively, we can perform steps of gradient projection to the prob-
lem of minimizing f(

∑
a∈At+1\a′′ caa) over the simplex defined

by
∑

a∈∈At+1\a′′ ca ≤ τ , ca ≥ 0, using the technique in [21].

Notice that the selection of the sparsifying atom in the backward
step — Step 12 — can be performed efficiently. From the form of f
defined in (4), we have

f(xt+1 − caa) = f(xt+1)− ca〈∇f(xt),a〉+
1

2
c2a‖Φa‖22, (5)

and the quantities ‖Φa‖22 can be computed efficiently and stored as
soon as each atom a enters the current basis At.

Steps 10 and 17 call for the coefficients ca to be consistent with
the current value of x and the current atomic basis set.

By varying the parameter η we can control the frequency of
backward steps. A value closer to 1 will yield more frequent re-
moval of atoms. In Section 5, we fix η = 1/2, in the spirit of [22].

It is possible for the atom a′ added in the forward step of some
iteration t to be immediately removed in the backward step of the
same iteration. This can happen because the reoptimizations in
Steps 10 and 13 may identify a different set of coefficients for the
same basis At that improves the objective, and the new atom is
not required. This behavior could indicate that the existing basis is
adequate to describe an approximate solution, that no new atoms
are needed, and that a near-optimal solution has been found. Our
implementation terminates when this behavior happens repeatedly.
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4. ANALYSIS

The analysis of our algorithm is a straightforward modification of
[15], so we provide only a sketch that highlights the points of differ-
ence. Two definitions are needed.

Definition [15, Definition 1]. Given a function f(·), a norm ‖ · ‖
and a set S, we define

L‖·‖(f, S) :=

sup
x,y∈S, α∈(0,1]

f((1− α)x + αy)− f(x)− 〈∇f(x), α(y − x)〉
α2‖y − x‖2

Given f(x) = 1
2
‖y −Φx‖2, we have L‖·‖(f, S) ≤ ‖ΦTΦ‖.

Definition [15]. R := supa∈A ‖a‖.

Theorem 4.1. Assume that f(·) is convex and smooth. Let x? be
the optimum value attained by Algorithm 1. Suppose we initialize
the algorithm with x0, and let η := 1

2
, L := L‖·‖(f, S), and R

be defined as above. Then the iterates from Algorithm 1 converge
according to the following: after T iterations, we have

f(xT )− f(x?) ≤ 2(B + 2Lτ2R2)2

BT
,

where B = f(x0)− f(x?).

We use η = 1/2 only for simplicity; a similar convergence rate can
be obtained for any η ∈ (0, 1) by a simple modification of the proof.

Proof. Recall that x̂t+1 = xt + γt+1(τat+1 −xt) and x̃t+1 (both
generated in the forward step) are feasible with respect to the atomic-
norm constraint and satisfy f(x̃t+1) ≤ f(x̂t+1). We thus have

f(x̃t+1)− f(xt) ≤ f(x̂t+1)− f(xt)

≤ min
γ∈[0,1]

(
2γ2Lτ2R2 − γ(f(xt)− f(x?))

)
,

where the second inequality follows from the analysis in [15]. Not-
ing that η = 1/2, we take a backward step only if

f(x̄t+1)− f(x̃t+1) ≤ 1

2
(f(xt)− f(x̃t+1)) . (6)

By combining these bounds, we have

f(xt+1)− f(xt) ≤
1

2
(f(x̃t+1)− f(xt))

≤ 1

2
min
γ∈[0,1]

(
2γ2Lτ2R2 − γ(f(xt)− f(x?))

)
.

By a recursive application of this bound, we obtain

f(xT )− f(x?) ≤ (2(B + 2Lτ2R2)2)/(BT ) (7)

5. EXPERIMENTS AND RESULTS

In all our experiments, we simply set x̃t+1 ← x̂t+1 in Step 9. For
the backward step, we choose the atom a′′ to delete (Step 12) ac-
cording to (5), and perform projected gradient iterations to update
the coefficients ca, for a ∈ At+1 \ a′′ (Step 13). In each of our
experiments, we set τ clairvoyantly, since we have access to the true
signal. In practice, τ can be chosen using standard methods such as
cross validation.

5.1. Sparse Signal Recovery

We tested our method on the compressed sensing framework:

x̂ = arg min
x
‖y −Φx‖2 s.t. ‖x‖1 ≤ τ

We consider a sparse signal of length p = 500, with k = 20 nonze-
ros. We obtain 80 (4×k) i.i.d. Gaussian measurements, and corrupt
the measurements with AWGN of standard deviation σ = 0.1. We
set τ = 1.1 × ‖xtrue‖1, where xtrue is the true signal. We fixed
the maximum number of iterations to be 200.

Fig 1 compares our method (F-B) to that of [15]. We also com-
pare our method to CoSaMP [23], another method that employs a
backward or pruning step. We see that our method recovers a sparser
signal, and has a better MSE value for fit to the true signal. Note that
after the optimization step 13, we set some coefficients to 0. In Table
1, we compare the runtimes of our method to that of Frank-Wolfe.
We see that although we take backward steps, our method takes sig-
nificantly less time as the problem size increases.
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Fig. 1. Comparison of algorithms for `1-regularized least squares.
The F-B method (MSE ≈ 1.22 × 10−4) outperforms Frank-Wolfe
(F-W) [15] (MSE ≈ 0.035), and CoSaMP (MSE ≈ 0.0050). In
200 iterations, we take 124 backward steps to remove elements from
the basis, leaving 76 elements in the final basis. Of these, 72 were
unique and only 25 have nonzero coefficients. The corresponding
values for F-W [15] are 75 and 60, respectively

# variables F-B F-W
512 2.1 38.8

1024 3.2 122
2048 23.3 1298

Table 1. Runtimes (in seconds) of Forward-Backward (F-B) and the
Frank-Wolfe (F-W) methods. For a problem with p variables, we
take p/4 Gaussian measurements of a p/16 sparse vector. Conver-
gence tolerance is 10−6 and maximum iterations is 2p.

5.2. Moment Problems in Signal Processing

Consider a continuous time signal

φ(t) =

k∑
j=1

cj exp(i2πfjt),

where each fj ∈ [0, 1]. In many applications of interest, φ(t) is
sampled at times S := {t1, t2, . . . , tn} giving an observation vector
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x := [φ(t1), φ(t2), . . . , φ(tn)] ∈ Cn. We thus have

x =

k∑
j=1

cja(fj) where a(fj) =
[
ei2πfjt1 . . . ei2πfjtn

]T
.

In [18], the authors consider the case where S ⊂ {1, . . . , N} ,
a random integer-valued subset over some sampling horizon N .
The Fourier transform of φ(t) can be viewed as a signed measure
supported on [0, 1] and the acquired sample vector x is a (partial)
trigonometric moment vector with respect to this measure. Recon-
structing the measure — finding the unknown coefficients cj and
frequencies fj from x — is a challenging problem in general. A
natural convex relaxation analyzed in [18] to the problem is (4) with
Φ = I , where the atomic norm is with respect to the atoms a(f)
described above.

In applying our algorithm to this problem, a minor technical
hurdle is Step 5, which involves finding the maximum modulus of
a trigonometric polynomial on the unit circle. While solvable as a
semidefinite program [24], we propose a simpler “random-gridding”
approach, in which several freqencies are chosen at random, and the
one with the most suitable frequency among these is selected as the
new atom. Due to the ability of our method to purge irrelevant atoms,
we can replace atoms picked in earlier iterations by more suitable
atoms identified at later iterations.
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(a) Our Method. The presence of the backward step discards less suitable
frequencies selected at earlier iterations, and produced tight clusters of fre-
quencies that could be aggregated into a single representative frequency.
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(b) The method of [15], with random gridding. Many false positive frequen-
cies are selected.

Fig. 2. Compressed Sensing off the Grid. The yellow squares are the
true frequencies, and the red circles are those estimated by greedy
methods.

We generated a signal consisting of a sum of 20 frequency com-
ponents, spaced equally between (0, 1]. We obtained n = 60 sam-
ples of the signal. We ran both our algorithm and that of [15] for 200
iterations. At each iteration, we obtain 1000 points, with frequencies
chosen randomly from the interval (0, 1]. Fig. 2(a) shows the per-
formance of our method. Note that, the repeated random gridding
allows us to recover the frequency components accurately. Also,
note that the backward step is key to the success of this method. By
contrast, we see in Fig. 2(b) that many spurious frequencies remain
in the reported solution if the algorithm contains no backward step.

An interesting possible modification of our algorithm would
be to optimize the trigonometric polynomial via adaptive gridding,
rather than the simple randomized gridding that is performed here

5.3. Group Sparse Models in Wavelet based Signal Processing

The authors of [20] propose the latent group lasso, a method that re-
covers signals whose support can be expressed as a union of groups.
That the penalty can be expressed as an atomic norm is shown in
[20, 8]. In [8], the authors use the concept to group parent-child
pairs in DWT coefficients, and perform image recovery. We see that
our method serves as the “greedy” analogue of the latent group lasso.
The method of this paper does not require replication of variables (as
was done in [4]), and hence avoids the inflation of problem dimen-
sion associated with replication.

We consider some standard 1D signals [25], and aim to recover
the parent child DWT coefficients modeled into groups. In each case,
we considered a length 1024 signal, and obtained 300 Gaussian mea-
surements corrupted with AWGN σ = 0.01. Each signal was scaled
to lie between ±1, and we restricted ourselves to 200 iterations of
the algorithm. Fig 3 shows that we recover a piecewise polynomial
signal fairly accurately. MSE results for other test signals are shown
in Table 2. We set τ = 1.1 ×

∑
G ‖xG‖, where xG is the Haar

DWT of the true signal restricted to the indices in group G.
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Fig. 3. Recovery of the Piecewise Polynomial test signal using
Parent-Child DWT coefficient groupings.

Signal MSE F-B MSE Forward Greedy
Piece Polynomial 1.38 × 10−4 2.767× 10−4

Blocks 2.126 × 10−4 7.593× 10−4

HeaviSine 0.0021 0.0023
Piecewise Regular 0.0028 0.0083

Table 2. Recovery of some 1d test signals in the presence of AWGN
(σ = 0.01). We see that at the end of 200 iterations, our method
consistently outperforms forward greedy selection [15]

6. CONCLUSIONS AND FURTHER RESEARCH

We have presented a forward-backward scheme for atomic-norm
constrained minimization. We showed that our method works bet-
ter than the simple forward greedy selection. The backward step
makes use of the quadratic form of the objective function to decide
efficiently on which atom to remove from the current basis.

In future work, we will investigate reoptimization methods in
the forward and backward steps, that is, effective and efficient im-
plementations of steps 9 and 13 that may exploit the properties of
the underlying applications. For example, we will use some steps of
gradient projection over the simplex, and incorporate adaptive grid-
ding strategies in the application to moment problems. We may also
consider performing more than one backward step on each iteration.
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