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ABSTRACT
Consider a multiple measurement vector (MMV) model

given by y[n] = Axs[n], 1 ≤ n ≤ L where {y[n]}Ln=1 de-
note the L measurement vectors, A ∈ RM×N is the measure-
ment matrix and xs[n] ∈ RN are the unknown vectors with
same sparsity support denoted by the set S0 with |S0| = D.
It has been shown in a recent paper by the authors that when
the elements of xs[n] are uncorrelated from each other, one
can recover sparsity levels as high as O(M2) for suitably de-
signed measurement matrix. The recovery is exact when sup-
port recovery algorithms are applied on the ideal correlation
matrix. When we only have estimates of the correlation, it is
still possible to probabilistically argue the recovery of spar-
sity levels (using a coherence based argument) that is much
higher than that guaranteed by existing coherence based re-
sults. However the lower bound on the probability of success
is found to increase rather slowly with L (as 1−C/L for some
constant C > 0) without any further assumption on the dis-
tribution of the source vectors. In this paper, we demonstrate
that when the source vectors belong to a Gaussian distribution
with diagonal covariance matrix, it is possible to guarantee
the recovery of original support with overwhelming probabil-
ity. We also provide numerical simulations to demonstrate the
effectiveness of the proposed strategy by comparing it with
other popular MMV based methods.

Index Terms — Support Recovery, LASSO, Block Spar-
sity, Multiple Measurement Vector (MMV), Correlation.

1. INTRODUCTION

Joint sparsity recovery, or block sparsity recovery from multi-
ple measurement vectors (MMV) is an active area of research
[2,4,5,9] that seeks to recover the common support shared by
a set of sparse signal vectors. Recently, the role of statistical
correlation among the multiple measurement vectors in recov-
ery of their common sparsity support has been investigated,
possibly for the first time, in [1]. In our recent paper [10], we
also proposed a correlation aware approach to sparse support
recovery in MMV problems. However, while the work in [1]
considers the case where the vectors actually have temporal
correlation and proposes algorithms to learn the correlation
by sparse Bayesian learning techniques, we actually consider
the case when the non zero entries of the source vectors xs[l]
have no correlation among themselves. In [10], it was shown
that for an uncorrelated signal model, it is possible to recover
the support for much higher levels of sparsity by using the
ideal correlation matrix. On the other hand, when we only
have estimates of the correlation (from the multiple measure-
ment vectors), one can probabilistically argue the recoverabil-
ity of higher sparsity levels [11] where the probability → 1 as
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L → ∞. However, in [11], no specific assumption regarding
the distribution of the source vectors was made, and so the
lower bound on the probability of support recovery increased
rather slowly with L (as 1−C/L for constant C > 0). In this
paper, we show that when the source vectors are assumed to
belong to a multivariate Gaussian distribution with a diagonal
covariance matrix, it is possible to guarantee support recovery
with probability that increases as 1 − β−L, β > 1. Using a
coherence based argument, it is thereby shown that one can
recover much higher levels of sparsity (than that guaranteed
by existing coherence based bounds) using the proposed tech-
nique, with overwhelming probability as L increases. It is
to be noted that unlike usual probabilistic results in literature
which compute the probability over an ensemble of measure-
ment matrices, in our formulation, the measurement matrix is
fixed and the probability is taken over the ensemble of source
vectors.

In [3], a very similar problem of joint sparse recovery in
the MMV model has been considered. However, the main dif-
ference between this work and [3] is that the size of the non
zero indices (say D) guaranteed to be recovered by the ap-
proach in [3] is restricted by D = O(M). However, we have
shown [10] that under the assumption of uncorrelated sources,
one can fundamentally overcome this limitation and recover
sparsity levels as large as D = O(M2). In this paper, we per-
form analysis of the framework proposed in [10] for case of
finite snapshots. As it is discussed later, this analysis can also
apply to the case when there is “partial correlation” among
the sources (instead of them being completely uncorrelated).

Notations: Matrices are denoted by boldface uppercase
symbols (such as A) and vectors are denoted by boldface
lowercase symbols (such as a). The (m,n) th element of a
matrix A is denotes Am,n while ith element of the vector a
is denoted as [a]i. The N × 1 vector of all 1s is denoted as
1N×1. The symbol A⊙B denotes the Khatri-Rao product
(column-wise Kronecker product) between matrices A,B
with same number of columns.

2. REVIEW OF CORRELATION AWARE LASSO

In a typical MMV problem, y[l] ∈ RM×1, 1 ≤ l ≤ L
denotes a set of L multiple measurement vectors, A ∈
RM×N = [a1 a2 · · ·aN ] is the measurement matrix, and
xs[l] ∈ RN×1, 1 ≤ l ≤ L are L unknown vectors with the
same sparsity ||xs[l]||0 = D and common support denoted
by the set S0 = {i0, i1, · · · , iD−1}. We have

y[l] = Axs[l], 1 ≤ l ≤ L. (1)

We introduce the following assumptions and notations:
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A1 The sub vectors consisting of non zero entries of xs[l] are
i.i.d Gaussian random vectors with a diagonal correla-
tion matrix Λ with σ2

i denoting the ith diagonal ele-
ment.

A2 N > M2.

The goal is to recover the support S0 using these ML
measurements and determine what is the maximum D upto
which all sparsity supports with cardinality D can be recov-
ered. In [10], it was demonstrated that with the perfect knowl-
edge of the autocorrelation matrix of the vectors y[l], one can
recover sparsity supports of much higher cardinality by apply-
ing Basis Pursuit (BP) on an appropriate model. The recover-
able sparsity can be as high as O(M2) for suitably designed
physical measurement matrices, which give rise to Vander-
monde matrices in an appropriate model derived from the au-
tocorrelation matrix [10]. Without such correlation aware-
ness, one could only recover sparsity supports upto [5] D <
rank(X)+Spark(A)−1

2 which gives a maximum of D < M − 1.
Most existing approaches [1], [3] to joint support recovery in
MMV problems can therefore only recover supports of size
D = O(M). In practice, we do not have ideal knowledge of
the correlation matrix and only have an estimate of the sample
correlation matrix. The estimated sample correlation matrix
is given by R̂

[L]
yy , 1

L

∑L
l=1 y[l]y[l]

T = AR̂
[L]
xxAT where

R̂
[L]
xx = 1

L

∑L
l=1 xs[l]xs[l]

T On vectorization, we can write

z[L] , vec(R[L]
yy ) = (A⊙A)r[L]

xx + e[L] (2)

where r
[L]
xx ∈ RN×1 is a D sparse vector with the same sup-

port S0 and non zero elements given by

σ2
i
[L] , 1

L

L∑
l=1

[xs[l]]
2
i , i ∈ S0 (3)

Hence r
[L]
xx is a non negative vector for all values of L. The

elements of the vector e[L] ∈ RM2×1 are given by

1

L

D∑
i,j=1
i ̸=j

L∑
l=1

Am,iAn,j [xs[l]]i[xs[l]]j , 1 ≤ m,n ≤ M. (4)

They denote the estimates of cross correlation between the
elements of y[l] which are nonzero for finite L. We aim to
recover the support S0 of the unknown vector r[L]

xx from this
model (2).

As shown in [11], the problem for recovering the sparse
support becomes finding the support of a vector r̂ ∈ RN×1

which is the solution to the following constrained LASSO:

min
r

(1
2
||(A⊙A)r− z[L]||22 + h||r||1

)
subject to r ≽ 0. (5)

Relation of Coherence to Recoverable Sparsity: The co-
herence of the measurement matrix A, defined as µA =

maxi ̸=j
|aT

i aj |
∥ai∥2∥aj∥2

, directly guarantees the recovery of up to
a certain level of sparsity. Given a measurement matrix A, if
the sparsity D < 1

2 (1 + 1
µA

), then all D-sparse vectors can
be successfully recovered [7] (in the noiseless case). In our

model (2), the effective measurement matrix is A⊙A whose
coherence is given by µ2

A [10]. Hence if a sparsity level of
D ≤ Dmax is guaranteed to be recovered using conventional
MMV based methods (which use A), we can guarantee the
recovery of sparsity levels of D ∼ D2

max using our frame-
work for the case of ideal correlation matrix. We will show
that under assumptions (A1-A2), even for the sample corre-
lation matrix (which is a random variable), we can argue this
to be true with overwhelming probability as L increases.

3. ANALYSIS OF LASSO

In [11], we performed analysis of the LASSO (5) by comput-
ing the probability of successful support recovery. However
the analysis was done without assuming any specific prob-
ability distribution for the source vectors. Accordingly, the
lower bound on the probability of successful recovery (de-
noted Ps) was found to be rather loose, and it increases with
L as Ps ≥ 1 − C

L . As evident, the bound increases rather
slowly with increasing L. In this paper, we demonstrate that
assuming a specific distribution on the unknown source vec-
tors, namely, multivariate Gaussian, it is possible to guarantee
support recovery with overwhelming probability with increas-
ing L. In particular, we will show that the probability of sup-
port recovery increases as Ps ≥ 1−Cβ−L, C > 0, β > 1.

We will derive the aforementioned result by first consid-
ering a set of sufficient conditions (given by the following
Lemma 1) for the optimal solution of (5) to yield the true
support of the sparse vectors, and then computing the proba-
bility with which these conditions will hold true. The follow-
ing lemma is proved in [11] using techniques similar to [8]
and [7].

Lemma 1. [11] If D < 1
2 (1+

1
µ2
A
), and the following events

denoted by E1 and E2 hold true:

E1 : ∥e[L]∥2 < h
1 + µ2

A − 2µ2
AD

1 + µ2
A − µ2

AD
, (6)

E2 : σ2
i
[L]

>
∥e[L]∥2 + h

1 + µ2
A − µ2

AD
, ∀i ∈ S0 (7)

then the optimal solution r∗ to the LASSO satisfies Supp(r∗) =
S0.

Notice that the above set of sufficient conditions involves
the random variables σ2

i
[L] and e[L]. Since E1 and E2 are

sufficient conditions for support recovery, if we can develop
a lower bound on the probability of joint occurrence of the
events E1 and E2, then the probability of successful support
recovery by solving LASSO can also be lower bounded by
the same quantity. In what follows, we will derive individ-
ual concentration inequalities that will finally help us lower
bound the probability of joint occurrence of E1 and E2.

3.1. Concentration Inequalities
We first state a concentration inequality ( [6], Lemma 6) that
will be directly used in our derivation:
Lemma 2. Let each of xi and yi, i = 1, · · · , k be real se-
quences of i.i.d zero mean Gaussian random variables with
variance σ2

x and σ2
y respectively. Then

P
(
|

k∑
i=1

xiyi| ≥ t
)
≤ 2exp

(
− t2

2σxσy(2σxσyk + t)

)

5881



Using above lemma, we can get the following result. The
notation σ

(k)
max denotes the kth largest element in the set of

non negative numbers {σi}Di=1.

Lemma 3. Under the assumptions (A1-A2), the following
holds ∀1 ≤ i ≤ M2:

P
(
|[e[L]]i| ≥ C

)
≤ 2exp

(
− Lt2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max + t)

)
,

where t , C
∥A∥2

∞,∞D(D−1)

Proof. Notice from (4) that

|[e[L]]i| ≤
∥ A ∥2∞,∞

L

D∑
k,j=1
i ̸=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ (8)

Therefore

|[e[L]]i| ≥ C =⇒
D∑

k,j=1
i ̸=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ ≥ CL

∥ A ∥2∞,∞
(9)

Also, notice that

D∑
k,j=1
i̸=j

L∑
l=1

∣∣∣[xs[l]]k[xs[l]]j

∣∣∣ ≥ CL

∥ A ∥2∞,∞
=⇒

L∑
l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL

∥ A ∥2∞,∞D(D − 1)
(10)

for some k0, j0 ∈ {1, · · · , D}, k0 ̸= j0. Using (9) and (10),
we can say that

P
(
|[e[L]]i| ≥ C

)
≤ P

( L∑
l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL

∥ A ∥2∞,∞D(D − 1)

)
(11)

Under assumption (A1), {[xs[l]]j}Ll=1 and {[xs[l]]k}Ll=1 de-
note sequences of i.i.d. zero mean Gaussian random variables
which are independent of each other. Hence, given k ̸= j, we
can use Lemma 2 to obtain

P
( L∑

l=1

∣∣∣[xs[l]]k0 [xs[l]]j0

∣∣∣ > CL

∥ A ∥2∞,∞D(D − 1)

)
≤ 2exp

(
− Lt2

2σk0
σl0(2σk0

σl0 + t)

)
≤ 2exp

(
− Lt2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max + t)

)
The desired result directly follows from above and (11).

We now prove a second concentration inequality which
directly provides a bound on the probability of occurrence of
event E2.

Lemma 4. Let xi, i = 1, · · · , L denote i.i.d zero mean Gaus-
sian random variables with variance σ2

x. Also, assume 0 <
C < σ2

x. Then, there exists β > 1 such that

P
( 1

L

L∑
i=1

x2
i > C

)
≥ 1− β−L (12)

Proof. The proof is based upon Chernoff Bound. Denote
p
[L]
x , 1

L

∑L
i=1 x

2
i . Then

P(p[L]
x > C) = P

( L∑
i=1

x2
i > CL

)
= P

( L∑
i=1

z2i >
CL

σ2
x

)
(13)

where zi denote i.i.d zero mean standard Normal variables.
Therefore

∑L
i=1 z

2
i is a Chi-Squared random variable with L

degrees of freedom. Observe

P(p[L]
x > C) = 1− P

( L∑
i=1

z2i ≤ CL

σ2
x

)
≥ 1− exp(

sCL

σ2
x

)(1 + 2s)−L/2 (14)

for s > 0. Equation (14) follows from the Chernoff Bound
and also from the fact that the Moment Generating function
of a Chi-Squared random variable with L degrees of freedom
is given by (1− 2s)−L/2, s < 1/2. Now define the function

β(s) = exp(−2sC

σ2
x

)(1 + 2s) (15)

we can write from (14) that

P(p[L]
x > C) ≥ 1−

(
β(s)

)−L/2

. (16)

We want to ensure that ∃s > 0, such that β(s) > 1. Now
β(s) > 1 ⇔ C < γ(s) where γ(s) , σ2

x

2s log(1 + 2s). It can
be verified that γ(s) is a decreasing function in s for s > 0
and γ(0) = σ2

x. Since, it is given that C < σ2
x, then indeed

∃s0 > 0 such that C < γ(s0). This in turn implies, β(s0) >
1. Hence, we conclude from (16) that P

(
1
L

∑L
i=1 x

2
i > C) ≥

1− β−L for β =
√

β(s0) > 1.

3.2. Probability of Support recovery by Solving the
LASSO
Armed with the inequalities provided by Lemmas 3 and 4,
we now state our main result on the probability of support
recovery by solving the LASSO (5), given by the following
theorem:

Theorem 1. Consider the MMV model given by (1) which
satisfies the assumptions (A1-A2).If

D <
1

2
(1 +

1

µ2
A

), 0 < h < σ2
min

(1 + µ2
A − µ2

AD)2

2(1 + µ2
A)− 3µ2

AD
,
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then the common support S0 of size D can be recovered by
solving the proposed LASSO given by (5), with probability
greater than 1− αγ−L for some γ > 1.

Proof. Using Lemma 1, we can say that the probability of
successful recovery of sparse support by solving the LASSO
(5), denoted as Ps, satisfies:

Ps ≥ P(E1

∩
E2) (17)

Using a technique similar to the proof of Lemma 2 in [11],
it can be shown that

P(E1

∩
E2) ≥

D∏
i=1

P(σ2
i
[L]

> c2)−
M2∑
i=1

P(| [e[L]]i |≥
c1
M

) (18)

Now using the expression for σ2
i
[L] from (3), we can say, from

Lemma 4 that

D∏
i=1

P(σ2
i
[L]

> c2) ≥
D∏
i=1

(1− β−L
i ) (19)

and using Lemma 3, we get

M2∑
i=1

P
(
| [e[L]]i |≥

c1
M

)
≤ 2M2e−δL (20)

where δ , t2

2σ
(1)
maxσ

(2)
max(2σ

(1)
maxσ

(2)
max+t)

and

t , c1
M∥A∥2

∞,∞D(D−1)
. Using (19) and (20) in (18), we obtain

Ps ≥
D∏
i=1

(1− β−L
i )− 2M2e−δL (21)

which proves the desired result since each βi > 1.

4. NUMERICAL RESULTS
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Fig. 1. Comparison of probability of support recovery as a
function of the number of measurement vectors (L) by the
proposed algorithm, l1 SVD and M-FOCUSS. Here M =
20, N = 256, D = 15.

In this section, we compare the performance of the pro-
posed method with two other well known methods for sparse

support recovery in a MMV setting, viz., the l1 SVD [9] and
M-FOCUSS [2], for different values of D. We consider a
fixed measurement matrix A generated as one instance of a
Gaussian random matrix with zero mean and unit variance.
We first assume M = 20, N = 256. In the implementa-
tion of M-FOCUSS, we use p = 1 to be consistent with the
other two methods. We demonstrate the probability of suc-
cessful support recovery (by generating zero mean i.i.d. ran-
dom xs[l], 1 ≤ l ≤ L but keeping A constant) averaged
over 500 Monte Carlo runs, for the proposed method, l1-SVD
and M-FOCUSS. We consider M = 20, N = 256, D = 15
and plot the probability of successful recovery as a function
of L in Figure 1.
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Fig. 2. Comparison of recovered support when D = 22 > M
by the proposed algorithm, l1 SVD, and M-FOCUSS. Red:
true support, blue: recovered support. Here M = 20, N =
256.

The plot brings an interesting observation: for low snap-
shots L ≤ 100, the other two methods show better recovery,
however, as L increases beyond 120, the proposed method
shows better performance. This can be explained by the fact
that as L increases, the cross terms become smaller (which
has same effect of lower noise term in the LASSO) and hence
the performance improves. We also carried out simulations
for a value of D larger than M , viz., D = 22. With L around
300, the proposed method could successfully recover the spar-
sity whereas l1-SVD and M-FOCUSS failed. In fact, the re-
covered vectors by these methods did not even turn out to be
sparse. A representative plot showing the recovered support
by the three methods is shown in Figure 2.

This shows the promise that with reasonably high number
of measurement vectors, the proposed method can actually
recover sparsity levels which are impossible to recover using
existing techniques. We are conducting extensive studies to
understand the effect of snapshots L on these methods for
various values of D [12].

5. CONCLUSION AND FUTURE WORK

In this paper, we showed that using a correlation aware frame-
work, one can possibly recover higher levels of sparsity with
overwhelming probability as L increases, when the source
vectors come from a Gaussian distribution with diagonal co-
variance matrix. The current analysis was based on the co-
herence of the measurement matrix which can be loose and in
future we would like to develop tighter conditions analogous
to RIP, null space condition etc. for the proposed framework.
Also, more extensive numerical study needs to be performed
to compare the performance of proposed method with power-
ful existing techniques such as l1 SVD and M-FOCUSS.

5883



6. REFERENCES

[1] Zhilin Zhang, and B.D. Rao, “Sparse Signal Recovery
With Temporally Correlated Source Vectors Using Sparse
Bayesian Learning”, IEEE Journal of Selected Topics in
Signal Processing, vol.5, no.5, pp. 912-926, Sep. 2011.

[2] S. F. Cotter, B. D. Rao, Engan Kjersti, K. Kreutz-
Delgado, “Sparse solutions to linear inverse problems
with multiple measurement vectors”, IEEE Transactions
on Signal Processing, vol. 53, no. 7, pp. 2477- 2488, July
2005.

[3] Kiryung Lee, Y. Bresler, and M. Junge, “Subspace Meth-
ods for Joint Sparse Recovery”, IEEE Transactions on
Information Theory, vol.58, no.6, pp. 3613-3641, June
2012.

[4] M. Stojnic, F. Parvaresh, B. Hassibi, “On the Reconstruc-
tion of Block-Sparse Signals With an Optimal Number
of Measurements”, IEEE Trans. SP, vol. 57, no. 8, pp.
3075-3085, Aug. 2009.

[5] Jie Chen, Xiaoming Huo, “Theoretical Results on
Sparse Representations of Multiple-Measurement Vec-
tors,” IEEE Transactions on Signal Processing,, vol. 54,
no. 12, pp. 4634-4643, Dec. 2006.

[6] J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, “Toeplitz Com-
pressed Sensing Matrices With Applications to Sparse
Channel Estimation”, IEEE Transactions on Information
Theory, vol. 56, no. 11, pp.5862-5875, Nov. 2010.

[7] J. J. Fuchs, “Recovery of exact sparse representations
in the presence of bounded noise,” Information Theory,
IEEE Transactions on, vol. 51, no. 10, pp. 3601-3608,
Oct. 2005.

[8] M. J. Wainwright, “Sharp Thresholds for High-
Dimensional and Noisy Sparsity Recovery Using l1-
Constrained Quadratic Programming (Lasso),” IEEE
Transactions on Information Theory, vol. 55, no. 5, pp.
2183-2202, May 2009.

[9] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse
signal reconstruction perspective for source localization
with sensor arrays”,IEEE Transactions on Signal Pro-
cessing, vol. 53, no. 8, pp. 3010-3022, Aug. 2005.

[10] Piya Pal and P. P. Vaidyanathan, “Correlation-Aware
Techniques for Sparse Support Recovery”, IEEE Statis-
tical Signal Processing Workshop, 2012, Ann Arbor, MI,
Aug. 5-8, 2012.

[11] Piya Pal and P. P. Vaidyanathan, “On Application of
LASSO for Sparse Support Recovery With Imperfect
Correlation Awareness”, Proc. of 46th Asilomar Confer-
ence on Signals, Systems, and Computers, Pacific Grove,
CA, Nov. 4-7, 2012.

[12] Piya Pal and P. P. Vaidyanathan, “Improving the lim-
its of sparse support recovery in Multiple Measurement
Vector (MMV) models using correlation-awareness”, in
preparation.

5884


