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ABSTRACT

This paper aims to provide theoretical guarantees via non-convex
optimization for sparse recovery. It is shown that the sparse signal
is the unique local optimal solution within a neighborhood, which
contains the least squares solution if the sparsity-inducing penalties
are not too non-convex. The idea of projected subgradient method
is generalized to solve this non-convex optimization problem. A u-
niform approximate projection is applied in the projection step to
make the algorithm more computationally tractable. The theoretical
convergence analysis of the proposed method, approximate project-
ed generalized gradient (APGG), is performed in the noisy scenario.
The result reveals that if the non-convexity of the penalties is under a
threshold, the bound of the recovery error is linear in both the noise
bound and the step size. Numerical simulations are performed to test
the performance of APGG and verify its theoretical analysis.

Index Terms— Non-convex optimization, sparsity-inducing
penalty, least squares solution, approximate projected generalized
gradient, convergence analysis.

1. INTRODUCTION

Since the introduction of compressive sensing (CS) [2,3], sparse sig-
nal recovery has received much attention [4, 5]. Suppose one ob-
serves a group of linear measurements y ∈ RM ,

y = Ax∗, (1)

where x∗ = (x∗i ) ∈ RN is an unknown K-sparse signal with T =
{i|x∗i 6= 0} as its support set, and A ∈ RM×N is a full row rank
sensing matrix with more columns than rows. Numerous researches
[6,7] have shown that it may be sufficient to solve (1) by recasting it
as a convex optimization problem

min ‖x‖1 subject to y = Ax. (2)

The problem (2) is also known as basis pursuit (BP). It is certified [8]
that under some certain conditions, the solution of (2) is identically
the sparsest one. This conclusion greatly reduces the computational
complexity, since (2) can be reformulated as a linear program (LP),
and be solved by many efficient algorithms [9].

Later, another family of sparse recovery algorithms [10–16] is
put forward based on non-convex optimization,

min J(x) subject to y = Ax, (3)

More details including proofs for the lemmas and theorems in this paper
can be found in [1]. The corresponding author of this paper is Yuantao Gu
(gyt@tsinghua.edu.cn).

where J(·) belongs to any sparsity-inducing penalties. It is theoreti-
cally proved [17–19] and experimentally verified [10–16,18,19] that
(3) tends to derive the sparsest solution with looser conditions than
(2), i.e., less measurements or more non-zero unknowns. However,
the inherent deficiency of multiple local minima in non-convex op-
timization limits its practical usage, where improper initial criteria
may cause the solution trapped into them.

The least squares (LS) solution A†y, where A† denotes the
pseudo-inverse matrix of A, has often been adopted to initialize the
non-convex optimization based sparse recovery algorithms [10, 12,
14–16]. Therefore, a question, which naturally appears and mainly
motivates this paper, is raised as follows.

Question. Initialized as the LS solution, does any al-
gorithm guarantee to find the sparsest solution to the
non-convex optimization (3)?

In this paper, focusing on a class of weakly convex functions with
parameter ρ less than zero [20], where larger (−ρ) implies J(·) is
more non-convex, the mentioned question is replied as follows.

Answer. The APGG method is proposed with guaran-
tees that it converges from the LS solution to the spars-
est solution provided that (−ρ) is below a threshold.

Specifically, this paper generalizes the idea of projected subgra-
dient method [21, 22] to solve the optimization problem (3). For
the class of sparsity-inducing penalties introduced in Section 2.1,
their generalized gradients can be applied as the step direction. The
initial LS solution and the projection step involve A†, while exac-
t calculation of pseudo-inverse may be computationally intractable
or even impossible because of its large scale in practical applica-
tions. Thus we adopt a uniform approximate A†, which greatly re-
duces the computational complexity of the method. We term it as
approximate projected generalized gradient (APGG) method. The
theoretical convergence analysis of APGG in the noisy scenario is
demonstrated. It reveals that as long as (−ρ) is below a threshold,
i.e. the penalty J(·) is not too non-convex, the iterative solution will
get into the neighborhood of the original sparse signal with radius
linear in both the noise bound and the step size. In the noiseless sce-
nario, for sufficiently small step size, the solution will approach the
sparse signal with any precision.

Relation to prior work: Projected subgradient method [21,22] is
a classical and typical approach to minimize a convex function with
constraints. Later in [23], the inexact projections are adopted into
these methods, but the inexact projections require approaching the
exact projection in the course of the algorithm. APGG can be con-
sidered as a generalization of zero-point attracting projection (ZAP)
algorithm [16], whose convex variant, `1-ZAP, has been thoroughly
analyzed [24]. There is a somewhat similar sparse recovery algorith-
m termed SL0 [14]. Considering the penalties of SL0 don’t belong to
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Table 1. Sparseness Measures with ρ and αF in Definition 1

No. F (t)
Param.

Require.
ρ αF

1. |t| — 0 1

2.
|t|

(|t|+ σ)1−p
0≤p<1,

σ>0
(p−1)σp−2 σp−1

3. 1− e−σ|t| σ > 0 −σ2/2 σ

4. ln(1 + σ|t|) σ > 0 −σ2/2 σ

5. atan(σ|t|) σ > 0 −3
√
3σ2

16
σ

6.
(2σ|t|−σ2t2)X|t|≤1

σ

+X|t|>1
σ

σ > 0 −σ2 2σ

those introduced in this paper, its parameter σ needs to be decreasing
over iterations. Its convergence analysis is provided in [25] using a
family of spline functions to approximate `0 norm. In [26], the so-
lution sequence of IRLS [12] for `1 norm minimization is proved to
converge to the sparse signal, while for `p norm with p ∈ (0, 1), a
local convergence result is established without taking into account
the initial solution.

2. SPARSENESS MEASURES AND THE APGG METHOD

In this section, the sparsity-inducing penalties and the APGG
method are introduced. Please refer to [1] for detailed proofs of
the results in this section and the next section.

2.1. Sparsity-inducing Penalties

First, a class of sparsity-inducing penalties is introduced so that
APGG can be applied to solve (3). This class of penalties is quite
general and covers many cost functions in sparse recovery litera-
tures. The penalty J(x) is defined as

J(x) :=

N∑
i=1

F (xi), (4)

where F (·) belongs to a class of sparseness measures satisfying the
following Definition 1. The definitions and properties of ρ-convex
function F (·) and its generalized gradient set ∂F (·) can be found
in [20]. Define ∂F (0) = {0}.

Definition 1. The function F : R→ R satisfies the following prop-
erties:

1) F (0) = 0, F (·) is even and not identically zero;
2) F (·) is non-decreasing on [0,+∞);
3) The function t 7→ F (t)/t is non-increasing on (0,+∞);
4) F (·) is a ρ-convex function on [0,+∞);
5) There exists a constant αF such that for any t ∈ (0,+∞)

and for any f(t) ∈ ∂F (t), |f(t)| ≤ αF .

Some commonly used sparseness measures [13, 16] satisfying
Definition 1 and their corresponding constants ρ and αF are demon-
strated in Table 1, where XP denotes the indicator function of P .

It needs to be pointed out that Definition 1.1)-3) is almost the
same as the definition of sparseness measures in [17], while two ad-
ditional requirements are imposed so that APGG becomes applicable

Table 2. Approximate Projected Generalized Gradient Method

Initialize: Calculate ATB as the approximate A†,

n = 0, and x(0) = ATBy;

Repeat: Generalized gradient step:

x̃(n+ 1) = x(n)− κ∇J(x(n));
Projection step:

x(n+ 1) = ATBy + (I−ATBA)x̃(n+ 1);

Iteration number increases by one: n = n+ 1;

Until: Stop criterion satisfied;

to solve (3). Most sparseness measures satisfying Definition 1.1)-3)
also satisfy Definition 1.4)-5) as well. One exception is the function

F (t) = |t|p p ∈ [0, 1), (5)

which has been widely discussed in the literatures [10, 12]. It satis-
fies Definition 1.1)-3), but goes against the ρ-convexity and bound-
edness of its generalized gradient set, i.e. Definition 1.4)-5). How-
ever, approximations are made in some literatures to improve its ro-
bustness. For example, measure (5) is approximated by

F (t) =
|t|

(|t|+ σ)1−p
(6)

with σ > 0 [18]. The approximation satisfies Definition 1.4)-5), and
its constants are shown in Table 1. This confirms that Definition 1.4)-
5) are reasonable and are implicated assumptions when some robust
algorithms or the theoretical analysis are taken into consideration.

2.2. Approximate Projected Generalized Gradient Method

The methods of computing a pseudo-inverse matrix have been devel-
oped to a mature technology [27,28]. To save computation, especial-
ly in large scale problems, this paper adopts approximate A†, which
is assumed of the form ATB, i.e. the transpose of A multiplied
by a matrix B ∈ RM×M . B can be considered as the approxima-
tion of (AAT)−1. To characterize the approximate precision of the
pseudo-inverse matrix, define

‖I−AATB‖2 ≤ ζ, (7)

and we assume that ζ < 1. The above assumptions are reasonable
when iterative methods are adopted [28–30].

The APGG method is described in Table 2, where the initializa-
tion is an approximate LS solution, κ > 0 denotes the step size and
∇J(x) is a column vector whose ith element is f(xi) ∈ ∂F (xi). If
ζ = 0, i.e. A† is exactly calculated, the method is termed projected
generalized gradient (PGG). The following Theorem 1 demonstrates
the effect of the approximate projection on the iterative solution. It
reveals that for a fixed approximate precision ζ ∈ (0, 1) and suffi-
ciently small step size κ, as n approaches infinity, the iterative solu-
tion x(n) will approach the solution space at any given precision.

Theorem 1. The iterative solution of APGG in the nth iteration,
x(n), satisfies

‖y −Ax(n)‖2 ≤ C1ζ
n+1 +

1

2
C2(ζ)κ, (8)

where C1 = ‖y‖2 and C2(ζ) = 2αF
√
N‖A‖2ζ/(1 − ζ)

ζ→0−−−→ 0
are two constants.
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3. MAIN CONTRIBUTIONS

In this section, the performance guarantees of APGG in the noisy
scenario, i.e. y = Ax∗ + e, are provided. The measurement noise
e is assumed deterministic and bounded in this paper. Two lem-
mas are established for preparation. These lemmas are related with
the optimization problem (3) and independent of specific recovery
algorithms. Lemma 1 declares that if the sensing matrix A satis-
fies some certain conditions, the optimization problem (3) is locally
stable. Lemma 2 reveals that if the difference between J(x) and
J(x∗) is small enough, x would not be far away from the desired
solution x∗, even though x does not necessarily lie in the solution
space. Based on these lemmas, Theorem 2, Theorem 3, and Corol-
lary 1 reveal that as long as (−ρ) is below a threshold, the solution
of APGG will definitely approach x∗ with recovery error linear in
both the noise bound and the step size. This is the Answer to the
Question raised in the Introduction.

Lemma 1. Let y = Ax∗+e where ‖e‖2 ≤ ε and x∗ is the desired
K-sparse signal. Assume that the null space constant [31] γJ <
1 for J(·) with a specific F (·) satisfying Definition 1. For any x
satisfying y = Ax, J(x) ≤ J(x∗) and ‖x − x∗‖2 ≤ M0 where
M0 is a positive constant, there exists a positive constant C3 such
that

‖x− x∗‖2 ≤ C3ε, (9)

and C3 is independent of ε.

Lemma 2. Let y = Ax∗+e where ‖e‖2 ≤ ε and x∗ is the desired
K-sparse signal. Assume that the null space constant γJ < 1 for
J(·) with a specific F (·) satisfying Definition 1. For any x satisfying
‖y −Ax‖2 ≤ η and 2C3(ε + η) ≤ ‖x − x∗‖2 ≤ M0, where C3

is specified in Lemma 1 with the same M0, there exists a uniform
constant c > 0 such that

J(x)− J(x∗) ≥ c‖x− x∗‖2. (10)

The existence of the positive uniform constant c will play an
important role in the theoretical convergence analysis. The follow-
ing Theorem 2 demonstrates the convergence property of the APGG
method in one iteration. For the convenience of theoretical analysis,
define a constantNκ such that ∀n > Nκ, ‖y−Ax(n)‖2 ≤ C2(ζ)κ.
For simplicity, x and x+ represent x(n) and x(n+1), respectively.

Theorem 2. Let y = Ax∗ + e where ‖e‖2 ≤ ε and x∗ is the
desired K-sparse signal. Assume that the null space constant γJ <
1 for J(·) with a specific F (·) satisfying Definition 1. Suppose the
previous iterative solution x satisfies ‖y −Ax‖2 ≤ C2(ζ)κ and

2C3(ε+ C2(ζ)κ) ≤ ‖x− x∗‖2 ≤ min{M0,
c

−2ρ}, (11)

where C2(ζ), C3, M0, and c are constants specified in Theorem 1,
Lemma 1, and Lemma 2, respectively. Further assume that

‖x− x∗‖2 ≥
µ

c
dκ+ C4(ζ)κ+ C5(ζ)ε, (12)

where µ > 1 is arbitrary, d = maxx ‖(I − ATBA)∇J(x)‖22,

C4(ζ)
ζ→0−−−→ 0 and C5(ζ)

ζ→0−−−→ 2αF
√
N‖A‖2‖B‖2/c are two

constants. Then the next iterative solution x+ satisfies

‖x+ − x∗‖22 ≤‖x− x∗‖22 − (µ− 1)dκ2. (13)

Since APGG adopts x(0) = ATBy as the initial solution, ac-
cording to (11), one expects that

‖x(0)− x∗‖2 ≤
c

−2ρ . (14)

Then according to Theorem 2, the subsequent iterative solutions sat-
isfy this constraint as well. The following theorem reveals that s-
parseness measures with appropriate ρ will result in (14).

Theorem 3. For sparsity-inducing penalty J(·) with a specific s-
parseness measure F (·) satisfying Definition 1, consider a class of
penalties

Jβ(x) =
1

β
J(βx), β > 0. (15)

If the parameters of F (·) are ρ and αF , then the corresponding pa-
rameters of Fβ(·) constituting Jβ(·) are ρβ = βρ and αFβ = αF .
Furthermore, there exists a positive constant β1 such that for any
β ∈ (0, β1], the constraint (14) holds when penalty (15) is applied
in (3).

Based on Theorem 2 and Theorem 3, the convergence guaran-
tees of APGG are provided in the following Corollary 1.

Corollary 1. Let y = Ax∗ + e where ‖e‖2 ≤ ε and x∗ is the
desired K-sparse signal. Assume that the null space constant γJ <
1 for J(·) with a specific F (·) satisfying Definition 1. Suppose the
initial solution x(0) is bounded, i.e., there exists a constantM0 such
that ‖x(0)− x∗‖2 ≤ M0. Define ρβ1 = β1ρ, then for penalty (15)
with parameter (−ρβ) below (−ρβ1), the iterative solution x(n)
will get into the (C6(ζ)κ + C7(ζ)ε)-neighborhood of x∗ in finite
iterations, where C6(ζ) = max

{
2C3C2(ζ), µd/c + C4(ζ)

}
and

C7(ζ) = max
{
2C3, C5(ζ)

}
.

Corollary 1 reveals that the approximate LS solution is a good
choice as the initial solution, and the iterative solution of APGG
will converge to the global optimal solution of (3). The parameter
ρ reveals how non-convex the penalty could be. Large (−ρ) im-
plies more non-convexity of J(·), which results in better recovery
performance but more difficulties in the initial solution selection.
When (−ρ) approaches infinity, the constraint (14) is so severe that
the initial solution is almost impossible to be selected. According
to Theorem 3 and Corollary 1, one would expect that there exist-
s a positive parameter ρ∗ such that the performance of APGG im-
proves as (−ρ) ∈ (0,−ρ∗) increases, and degenerates rapidly as
(−ρ) ∈ (−ρ∗,+∞) continues to grow. As (−ρ) approaches zero,
the recovery performance tends to the case of J(·) = ‖ · ‖1. These
results are further verified by the simulations in the next section.

4. NUMERICAL SIMULATIONS

In this section, three experiments are conducted to test the recovery
performance of the APGG method and verify the theoretical anal-
ysis. The sensing matrix A is of size N = 1000 and M = 200,
whose entries are independently and identically distributed Gaus-
sian with zero mean and variance 1/M . The locations of non-zero
entries of the sparse signal x∗ are randomly chosen among all pos-
sible choices. These non-zero entries are independently Gaussian
distributed with zero mean and the same variance. The sparse sig-
nal is finally normalized to have unit energy. In all simulations, the
approximate A† is calculated using the method in [29].

The first experiment tests the recovery performance of the PG-
G method in the noiseless scenario with different sparsity-inducing
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Fig. 1. The figure shows the recovery performance of the PGG
method with sparsity-inducing penalties from Table 1.

penalties from Table 1. For each penalty with some certain ρ, the
sparsity level K varies from 1 to 100 with increment of one. If the
recovery SNR (RSNR) is higher than 40dB, this recovery is regard-
ed as a success. The simulation is repeated 100 trials to calculate
the successful recovery probability versus sparsity K. Then the cru-
cial sparsity Kmax, which is the largest integer which guarantees
100% successful recovery, is recorded. The results are presented in
Fig. 1. As is revealed, for the non-convex sparsity-inducing penal-
ties, as (−ρ) increases, the performance of PGG increases at first,
and degenerates rapidly when (−ρ) continues to grow. When (−ρ)
approaches zero, the performances of these penalties are close to
that of the `1 norm. These results are consistent in the theoretical
analysis of Theorem 3 and discussions after Corollary 1.

In the second experiment, the recovery performance of APGG
is compared in the noiseless scenario with some typical sparse re-
covery algorithms, including OMP [32], the solution to BP [33], the
solution to reweighted `1 minimization [13], ISL0 [15], and IRL-
S [12]. In the simulation, K varies from 20 to 100. The APGG
method adopts the No. 6 sparseness measure in Table 1 with σ = 10,
and the step size is set to 10−6. The iteration number for calculat-
ing inexact pseudo-inverse matrices is 0, which means that ςAT is
adopted with precision ζ = 0.91 [29]. For comparison, the perfor-
mance of PGG is also plotted. The simulation is repeated 200 trials
to calculate the successful recovery probability versus sparsity K,
and the results are demonstrated in Fig. 2. As can be seen, APGG,
PGG, and IRLS guarantee successful recovery for larger sparsity K
than the other reference algorithms. In the noiseless scenario with
sufficiently small step size, the inexact projection has little affect on
the recovery performance of APGG.

In the third experiment, the recovery precision of the APGG
method is simulated under different settings of noise bound and step
size. The performance of PGG is also compared. In the simulation
K = 30. The sparseness measure is the same as that in the previ-
ous experiment, and the iteration number for calculating inexact A†

is 4 such that ζ = 0.22. The simulation is repeated 100 trials to
calculate the mean squared error (MSE), and the results are shown
in Fig. 3. As can be seen, there is almost no difference between the
performance of APGG and that of PGG. In the noisy scenario, the
recovery SNR (RSNR) is dependent on both the measurement SNR
(MSNR) and the step size. For fixed MSNR, as the step size de-
creases, the RSNR improves at first, and remains the same when the
step size is sufficiently small. Larger MSNR results in larger RSNR
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Fig. 2. The figure compares the successful recovery probability of
different algorithms versus sparsity K. The approximate precision
of inexact A† is ζ = 0.91.

10−710−610−510−410−310−2
−20

0

20

40

60

80

100

step size κ

R
S

N
R

 

 

APGG
PGG
MSNR = 10dB
MSNR = 20dB
MSNR = 30dB
MSNR = 40dB
MSNR = infinity

Fig. 3. The figure demonstrates the recovery precision of the APGG
and PGG methods under different measurement noise and step size.
The approximate precision of inexact A† is ζ = 0.22.

limit. In the noiseless scenario, the RSNR improves as the step size
decreases, and can be arbitrarily large by adopting sufficiently small
step size. These results are accordant with Corollary 1, which im-
plies that the recovery error is linear in both the noise bound and the
step size.

5. CONCLUSION

This paper considers the guarantees that the non-convex optimiza-
tion for sparse recovery finds the global optimal solution. Theo-
retical analysis reveals that there exists a neighborhood of x∗ that
contains no other local minima, while the commonly used initial LS
solution lies in this neighborhood provided that the non-convexity of
penalty J(·) is below a threshold. The APGG method is proposed
to solve this optimization problem. It reveals that as long as the pa-
rameter (−ρ) is below a threshold, the iterative solution will get into
the neighborhood of x∗ with radius linear in both the noise bound ε
and the step size κ. Thus it is guaranteed that APGG converges from
the LS solution to the global minimum. Simulation results verify the
theoretical analysis, and the recovery performance of APGG is not
much influenced by the approximate projection.
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