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ABSTRACT

We propose a new mixed integer linear programming (MILP) formu-
lation of the sparse signal recovery problem in compressed sensing
(CS). This formulation is obtained by introduction of an auxiliary bi-
nary vector, where ones locate the recovered nonzero indices. Joint
optimization for finding this auxiliary vector together with the un-
derlying sparse vector leads to the proposed MILP formulation. By
addition of a few appropriate constraints, this problem can be solved
by existing MILP solvers. In contrast to other methods, this formu-
lation is not an approximation of the sparse optimization problem,
but is its equivalent. Hence, its solution is exactly equal to the opti-
mal solution of the original sparse recovery problem, once it is feasi-
ble. We demonstrate this by recovery simulations involving different
sparse signal types. The proposed scheme improves recovery over
the mainstream CS recovery methods especially when the underly-
ing sparse signals have constant amplitude nonzero elements.

Index Terms— compressed sensing, ℓ0 norm minimization,
sparse signal recovery, mixed integer linear programming, branch-
and-cut algorithm

1. INTRODUCTION

In contrast to the conventional acquisition process, where a signal is
captured as a whole before dimensionality reduction can be applied
via transform coding, the rapidly emerging compressed sensing (CS)
field targets acquisition of sparse or compressible signals directly in
reduced dimensions. Concentrating on the sparse case, let us define
x ∈ RN×1 as a K-sparse signal, i.e. x has at most K nonzero
elements. Employing an observation matrix Φ ∈ RM×N , where
K < M < N , the “compressed” observations y ∈ RM×1 can be
obtained as

y = Φx. (1)

This compressed observations introduce the fundamental problem
of CS: Because of the dimensionality reduction via M < N , there
exists infinitely many solutions for x. To overcome this difficulty,
(1) is casted as the sparsity-promoting optimization problem

minimize ∥x∥0
subject to Φx = y, (2)

where ∥x∥0, called the ℓ0 norm by abuse of terminology, denotes the
number of nonzero elements in x. Since direct solution of (2) is com-
putationally intractable, it has been shown that x can be recovered
by alternative formulations [1, 2, 3, 4, 5] once the observation ma-
trix Φ satisfies the restricted isometry property (RIP) [1]. Random
observation matrices, such as those with independent and identically
distributed Gaussian or Bernoulli entries and random selections from

the discrete Fourier transform, are common in CS, since these satisfy
the RIP with high probabilities if K, M and N satisfy some specific
conditions [6].

1.1. Related Work in Compressed Sensing

The CS literature contains a vast number of sparse signal recovery
algorithms which exploit different properties of the underlying re-
covery problem, such as [4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15]. An
insightful overview and classification of CS sparse signal recovery
methods can be found in [16].

Among different classes of algorithms, convex relaxation [1, 5,
6, 17] replaces the ℓ0 minimization in (2) with its closest convex
approximation, the ℓ1 minimization, which can be solved by convex
optimization algorithms. Being the first convex relaxation algorithm,
basis pursuit (BP) [17] solves the corresponding ℓ1 norm minimiza-
tion problem by a primal-dual interior-point method. On the other
hand, greedy pursuit algorithms [3, 7, 18, 19, 20, 21, 22, 23] provide
iterative approximations of (2). Among these, orthogonal matching
pursuit (OMP) [7] builds up the support of x by adding one element
per iteration. subspace pursuit (SP) [3] and compressive sampling
matching pursuit (CoSaMP) [2] apply two-stage iterative schemes,
where each iteration first expands and then shrinks the support esti-
mate by the same number of elements. Another two-stage scheme
is proposed by forward-backward pursuit (FBP) [24], where the ex-
pansion is larger than the shrinkage, enlarging the support estimate
iteratively. Iterative hard thresholding (IHT) [4] combines gradient
descent with a thresholding step. Among other types of algorithms,
A⋆OMP [25, 26] is a semi-greedy approach, which employs best-
first search in combination with OMP to recover x. Smoothed ℓ0
(SL0) [27] is a non-convex procedure which minimizes a smoothed
version of ∥x∥0 by a series of optimizations where the quality of the
approximation is gradually improved. Among iterative re-weighting
algorithms, iterative support detection (ISD) [28] solves a series of
re-weighted ℓ1 minimizations where only the indices of x out of the
detected support are penalized.

1.2. Our Contributions

This paper proposes a mixed integer linear programming (MILP)
model to solve an equivalent formulation of problem (2). Previous
work in the field has examined the use of LP, however, to the best
of our knowledge, MILP appears for the first time in this context.
Moreover, the formulation we introduce here is not a relaxation of
(2) as for the mainstream CS sparse signal recovery methods, but it
is equivalent to (2). That is, the solution of the proposed formula-
tion is exactly equal to the solution of the original sparse optimiza-
tion problem, once it is feasible. To obtain this MILP formulation,
we introduce an auxiliary binary vector z of length N , on which the
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nonzero indices of x are located by ones. Then, (2) can be casted into
an equivalent MILP problem which is based on the joint optimiza-
tion of z and x. The feasibility of the solution is demonstrated by a
number of simulations for recovery of sparse signals from noise-free
measurements. These simulations not only reveal the performance
of the proposed approach for recovery of sparse signals with differ-
ent characteristics, but also compare it to a number of well-known
algorithms in the field such as SP, BP, OMP, IHT, ISD, SL0 and
A*OMP.

2. MILP FORMULATION OF THE CS SPARSE
RECOVERY PROBLEM

The CS recovery problem in (2) may be considered as an optimiza-
tion problem involving two subproblems which should be solved si-
multaneously: The first one of these problems is identifying the lo-
cations of the nonzero elements of x, i.e. the support of x, and the
other is finding the values of these nonzero elements. An equivalent
MILP formulation of (2) might be obtained by exploiting this basic
observation.

2.1. Problem Formulation

Let T be the support of x, and xT be the vector consisting of the
elements of x indexed by T . Next, we define the auxiliary vector
z = [z1 z2 . . . zN ]T to mark the nonzero locations of x:

zi =

{
1, if i ∈ T ;
0, otherwise. (3)

Now, our original problem (2) can be equivalently written as

minimize eT z

subject to Φx = y,

clzi ≤ xi ≤ cuzi, i = 1, · · · , N, (4)
zi ∈ {0, 1}, i = 1, · · · , N,

where e is a vector of ones, and cl, cu ∈ R are chosen large enough
so that the range [cl, cu] covers all nonzero values in x. The bound
constraints given in the third line of (4) force the nonzero elements
of x to appear only at the locations marked by z.

Though (4) is already enough for finding the correct support of
x, we also define the sparsity constraint as

eT z ≤ rM, (5)

where 0 < r ≤ 1. This constraint sets an upper limit on the sparsity
of the recovered vector, hence reduces the feasible solution space.
We discuss the choice of r below.

Next, we define a combined representation to complete the
MILP formulation of the CS sparse recovery problem. Let us first
introduce the auxiliary vector

f = [zTxT ]T (6)

and the weight vector

w = [eT 01×N ]T , (7)

where 0b×c ∈ Rb×c denotes a matrix consisting of zeros only. Us-
ing these, we write the MILP equivalent of the CS sparse signal re-

covery problem as

minimize wT f

subject to Aeqf = beq,

Aineqf ≤ bineq, (8)
zi ∈ {0, 1}, i = 1, · · · , N,

where

Aeq = [0M×N Φ] , (9)
beq = y, (10)

Aineq =



−cu 0 1 0
. . .

. . .
0 −cu 0 1

cl 0 −1 0
. . .

. . .
0 cl 0 −1

1 · · · 1 0 · · · 0


,

︸ ︷︷ ︸
2N

(11)

bineq = [01×2N rM ]T . (12)

Note that (9) and (10) represent the observation constraint Φx = y.
The first 2N rows of (11) and (12) represent the constraints on the
nonzero elements of x, i.e. clzi ≤ xi ≤ cuzi, while the last rows of
these correspond to the sparsity constraint in (5).

2.2. Practical Issues

In this work, we employ the IBM ILOG CPLEX optimization stu-
dio [29] to solve the MILP problem (8). In practice, (8) might take
too long to solve, even when powerful solvers like CPLEX are em-
ployed. The parameters cl, cu and r, which should be chosen prop-
erly, are very important for this purpose. We discuss these parame-
ters below.

The parameters cl and cu define the range which the nonzero
values of x are allowed to span. If the chosen range is narrower
than the actual range for x, recovery failure is obvious. On the other
hand, if the range [cl, cu] is chosen too wide, then the constraints are
clearly not tight enough and they are not useful in reducing the size
of the search tree employed in solving the MILP by the solver. Con-
sequently, the computational effort increases along with the solution
time. Hence, cl and cu should be chosen properly. Having said
that, our main concern in this work is not finding the optimal [cl, cu]
range, but demonstrating application of MILP in the CS problem.
Hence, we do not attempt at finding the optimal cl and cu range, but
employ appropriate assumptions during the simulations.

The sparsity constraint (5) also plays an important role in prac-
tice. Note that r = 1 is a natural upper bound due to the problem
definition. Choosing r smaller, on the other hand, reduces the feasi-
ble solution space and therefore allows for faster termination of the
algorithm. However, as for cl and cu, r should also not be chosen
smaller than the actual sparsity level, since this makes the actual so-
lution infeasible. For many practical applications, K is not known
a priori, however K ≪ M holds in general. In accordance, we
choose r = 0.5, i.e. ∥x∥0 ≤ 0.5M in the simulations below, while
this choice might be modified according to the a priori information
about a particular recovery problem. Choosing r = 0.5 also pro-
vides another important advantage. Following the assumption that
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Φ is full row rank, this choice guarantees that the optimization prob-
lem has only one possible solution when K ≤ M/2. 1 This allows
us to configure the optimization parameters such that CPLEX re-
turns the first solution it encounters, without running until the actual
termination point where all MILP subproblems are covered. This
results in faster termination of the algorithm.

3. SIMULATIONS

Below, we demonstrate the performance of MILP for the CS sig-
nal recovery problem in comparison to A⋆OMP, BP, SP, OMP and
IHT. As discussed above, MILP problem is solved by running the
“cplexmilp” optimizer of the CPLEX optimization studio [29] from
the MATLAB environment. We set a time limit of 100 seconds on
CPLEX for each recovery, and terminate optimization just after the
first solution is found. That is, if no solution is found in 100 sec-
onds, the algorithm fails. As discussed above, we set r = 0.5.
The other algorithms are run using freely available software such as
ℓ1−magic [30], Sparsify [31] and AStarOMP [32], Threshold-ISD
[33] and the Matlab implementation of SL0 [34]. A⋆OMP and OMP
are run using a residue-based termination criterion with ε = 10−6.
That is, they run until ∥r∥2 ≤ ε∥y∥2, where r denotes the residue
of the observation y. A⋆OMP parameters are set as I = 3, B = 2
and P = 200, and the Adaptive-Multiplicative cost model [26] is
employed with α = 0.97. For SL0, we decrement the smoothing
parameter σ slowly by 0.95 in order to decrease the risk of falling
into local minima. The algorithms are run to recover sparse signals
with different characteristics from noise-free measurements. Each
test is repeated over 200 randomly generated sparse samples. The
signal length is chosen as N = 256, while M = 100. The spar-
sity level K varies in [10, 50]. For each test sample, the elements of
Φ are modelled as independent and identically distributed Gaussian
random variables with mean 0 and standard deviation 1/N . The re-
covery results are expressed in terms of Average Normalized Mean-
Squared-Error (ANMSE) and the exact recovery rates. ANMSE is
defined as

ANMSE =
1

100

L∑
i=1

∥xi − x̂i∥22
∥xi∥22

(13)

where x̂i is the reconstruction of the ith test vector xi.
The tests involve sparse samples with different characteristics.

The nonzero entries of these samples are selected from four differ-
ent random ensembles. The nonzero entries of the so-called Gaus-
sian sparse signals are drawn from the standard Gaussian distribu-
tion. Nonzero elements of uniform sparse signals are distributed
uniformly in [−1, 1]. In addition to these, we consider two types
of sparse signals with constant amplitude nonzero elements: The
nonzero elements of the binary sparse signals are set to 1. Finally,
the constant amplitude random sign (CARS) sparse signals, where
the naming follows [35], involve nonzero elements with unit ampli-
tude and random sign.

Figure 1(a) depicts the recovery results for binary sparse sig-
nals. For this case, we assume that the nonzero coefficients of x lie
in [0, 1], i.e. cl = 0, and cu = 1. The other algorithms are also pro-
vided with similar a priori information. Interestingly, we observe
that once such a priori information is available, MILP formulation
leads to exact recovery of all binary sparse signals with sparsity level
K ∈ [10, 50]. In practice, this provides a clear advantage for prob-
lems, where the sparse signal is known to have nonzero elements

1This follows from the uniqueness of any K-sparse solution when 2K-
RIP is satisfied. See, for example, the discussion in [16].

with equal or close values. As for the CARS case, which is similar
to the binary problem except the random sign, we set cl = 0, and
cu = 1. Figure 1(b) depicts the superior recovery accuracy of MILP
formulation for this case. We observe that the highest exact recovery
rate is obtained by employing MILP. In addition, the ANMSE for the
MILP formulation is exactly related to the exact recovery rate. That
is, if MILP is able to find a solution in at most 100 seconds, this
solution is correct. Otherwise, an empty solution is returned, and
the normalized ℓ2 norm of the residue is equal to unity. Hence, the
ANMSE becomes equal to one minus the exact recovery rate of the
MILP formulation. This indicates that the solution found by MILP
is exactly equal to the exact solution of the original ℓ0 minimization
problem, as discussed above.

The recovery results for the Gaussian and uniform sparse signals
are illustrated in Figures 1(c) and 1(d). For uniform sparse signals,
we assume that the signal is known to lie in [−1, 1], that is cl = −1
and cu = 1. For the Gaussian ensemble, we set −cl = cu = ∥x∥∞.
We observe that MILP formulation still yields the highest accuracy
for uniform sparse signals, while A*OMP performs very close to
it. When the nonzero entries are normally distributed, A*OMP has
the highest recovery accuracy, while SL0 and ISD also perform bet-
ter than MILP. Clearly, MILP performance degrades when the range
which is spanned by the nonzero elements of the underlying sparse
signals gets wider. Among the examples we considered, Gaussian
sparse signals are ones with the widest span of nonzero elements,
hence they constitute the case where MILP shows the worst perfor-
mance.

In addition to the recovery accuracy, run times of the MILP op-
timization are also extremely important for the evaluation of the pro-
posed approach. Most integer programming problems are naturally
NP-hard. However, the average run times depicted in Table 1 state
that the proposed formulation can be solved in reasonable time for
the recovery of sparse signals having constant amplitude nonzero el-
ements with appropriate assumptions which effectively reduce the
feasible solution space. We observe that the run time increases when
K exceeds 40 for CARS case. This is due to the failed recoveries,
for each of which the algorithm runs for 100 seconds. For cases
where MILP formulation provides exact recovery of all signals, the
run times are reasonable for many applications.

Table 1. Average run-time in seconds per sparse vector

K

10 20 30 40 50

Binary 0.18 0.19 0.19 0.2 0.34

CARS 0.23 0.27 0.37 22.1 81.9

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have concentrated on a new formulation for the
sparse signal recovery problem. This formulation casts the problem
into a MILP problem. Though MILP problems are mostly NP-hard,
introduction of appropriate constraints help making it tractable for
our case.

We demonstrated the sparse signal recovery performance of the
proposed approach via a number of simulation experiments involv-
ing sparse signals with different characteristics. These simulations
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(a) Binary sparse signals
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(b) CARS sparse signals
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(c) Gaussian sparse signals
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(d) Uniform sparse signals

Fig. 1. Average recovery results for the binary, CARS, uniform and Gaussian sparse signals. Each test is repeated over 100 random test
samples. The signal length is 256, and the observation length is 100. The observation matrices are drawn from the Gaussian distribution.

indicate that the proposed approach yields high recovery rates when
the underlying sparse signals have equal amplitude nonzero ele-
ments. Especially for binary sparse signals we have observed that
the MILP formulation yields exact recovery until K = M/2 under
some appropriate assumptions. Moreover, the algorithm is reason-
ably fast for such signals. The recovery accuracy of the proposed
approach, however, begins to degrade when the nonzero elements
vary in amplitude, in which case some other candidates yield similar
or better recovery accuracy. Taking the complexity of the proposed
algorithm also into account, we may conclude that the proposed
approach is favorable for the recovery of sparse signals with con-
stant or similar amplitude nonzero elements, especially the binary
ones, where it provides both high recovery accuracy and reasonable
termination speed.

Before concluding, we would like to note that future work on the
constraints is necessary to take the full advantage of MILP in com-
pressed sensing. Methods for finding tight bounds on the nonzero
elements of the underlying sparse signals might especially be of in-
terest. In addition, it is also worth investigating other possible con-
straints to further reduce the feasible solution space. One example
of the latter might be structured sparsity, where the feasible solution
space size may be further reduced by exploiting problem specific
signal structures. In addition, our MILP reformulation is quite suit-
able to be solved with the well-known Benders decomposition tech-

nique [36] of integer programming. We believe implementing Ben-
ders decomposition would alleviate the computational burden, and
hence, help us to solve much larger problems in shorter run times.
We reserve such an implementation and the respective computational
study for our future research. Finally, we believe that rapid advance-
ments in computer hardware will be a vital key for the practical use
of such methods in the near future.
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nal recovery via A⋆ orthogonal matching pursuit,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2011 IEEE In-
ternational Conference on, May 2011, pp. 3732 –3735.

[12] A. Kyrillidis, G. Puy, and V. Cevher, “Hard thresholding with
norm constraints,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, Mar. 2012,
pp. 3645 –3648.

[13] D. Malioutov and M. Malyutov, “Boolean compressed sens-
ing: Lp relaxation for group testing,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Confer-
ence on, Mar. 2012, pp. 3305 –3308.

[14] A.Y. Carmi, L. Mihaylova, and D. Kanevsky, “Unscented com-
pressed sensing,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, Mar. 2012,
pp. 5249 –5252.
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