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ABSTRACT 

Approximate Message Passing (AMP) simplified from 
Loopy Belief Propagation (LBP), is an important algorithm 
for sparse signal reconstruction in Compressed Sensing (CS). 
To improve the performance of current AMP algorithms, a 
weighted-damped AMP algorithm (WDAMP) is derived 
from a weighted version of BP that adopt probability 
damping technique. Simulation results show that WDAMP 
outperforms normal AMP for both 1-D and 2-D signal 
reconstruction. For 1-D signal reconstruction, probability 
damping brings most of the improvement. For 2-D signal 
reconstruction, weighting technique makes the major 
contribution. In summary, WDAMP outperforms 
conventional AMP. 

Index Terms—Approximate Message Passing, Belief 
Propagation, Compressed Sensing, Tree-reweighted  

1. INTRODUCTION 

In Compressed Sensing (CS), the key problem is how to 
reconstruct the sparse signal as precisely as possible from 
noisy measurements obtained via an underdetermined linear 
observation equation [1], [2]. This problem can be 
reformulated as Bayesian inference on cyclic factor graph 
model [3], which can be solved through Loopy Belief 
Propagation (LBP) [4]. However, the computational 
complexity and memory requirement of LBP is too high for 
practical application. In order to solve this problem, 
Approximate Message Passing (AMP) simplified from LBP 
has been proposed in [3], [5] and [6].  

Recently, LBP is improved as Tree-reweighted belief 
propagation (TRW-BP) in [7], and enhanced by the 
probability damping technique in [8]. Based on them, a 
weighted damped BP (WDBP) is constructed in this paper. 
WDBP adopts probability damping technique and replaces 
the factor appearance probability in TRW-BP [9] with 
positive weights satisfying an equality constraint. Simplified 
from WDBP, weighted-damped AMP is presented.  
--------------------------------- 
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Simulation results show that WDAMP outperforms 
normal AMP for both 1-D and 2-D signal reconstruction. 
For 1-D signal reconstruction, probability damping brings 
most of the improvement. For 2-D signal reconstruction, 
weighting technique makes the most contribution. In 
summary, WDAMP outperforms conventional AMP. 

 
2. PROBLEM MODEL  

 
The mathematical model for CS can be expressed as  

y Hx w ,                                 (1) 

in which My M  is measurement vector, Nx N is the 
identically independent distributed (i.i.d) sparse signal 
vector with K non-zero elements, M NH

)
M N is the column-

wise normalized Gaussian measurement matrix, and 
Mw M is the zero-mean white Gaussian noise  with 

variance 2 . It’s assumed that K M N . In this paper, 
K and 2 are assumed to be known. The well-known CS 
problem is about how to reconstruct x from y as exactly as 
possible based on the underdetermined equation (1). 

In Bayesian inference, signal prior probability 
distribution function (PDF) is needed. In this paper, the PDF 
of the i.i.d element in x is assumed to be Bernoulli-Gauss 
[6], which is expressed as 

2( ) (1 ) ( ) ( , , )x xx p x p x                  (2) 

in which p (fixed as /K N in this paper) is probability of the 
non-zero elements in x , ( )x is the Dirac function, and 

2( , , )x xx is the standard Gaussian distribution function 
with mean x and variance 2

x .  
 
3. WEIGHTED DAMPED APPROXIMATE MESSAGE 

PASSING 
 
In this section, the weighted loopy belief propagation 
algorithm that adopts probability damping technique 
(WDBP) is designed firstly. Then the WDAMP is derived 
based on WDBP.  
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3.1. Design of weighted damped loopy belief propagation 

The i th element of x can be approximate as ( | )i i idx x p x y , 
which is the Maximum A-Posteriori (MAP) estimate for ix . 
The calculation of ( | )ip x y is intractable. Fortunately, LBP 
can provide a useful approximate on ( | )ip x y . In this paper, a 
new weighted-damped BP (WDBP) is derived under the 
theoretical framework of LBP.   

Based on (1), the posterior distribution of x over 
y is ( | )p x y , whose calculation is intractable again. ( | )p x y  
will be approximated as ( , )b x y under the objective of 
minimizing their Kullback-Leibler (KL) divergence. ( , )b x y  
belongs to one local polytope  defined as [9]  

( ) { ( , ) | ( ) 0, ( , ) 0, ( ) 1,

( , ) 1, ( , ) ( )}
i

i i i i ix

j i i
j i

L G b b x b y dx b x

d b y dx b y b x
x

x y x

x x x
, (3) 

where ( )i ib x and ( , )b y x are normalized, non-negative, 
and mutually consistent marginal distributions, but not 
necessarily correspond to a valid global distributions [10], 

[ ]i N , [ ]M , [ ] {1,2,...., }N N , [ ] {1,2,...., }M M .  
The optimization problem can be formulated as   

[ ]

( ) 1

1

max{ ( ) ( ) log ( )

( , ) log ( , )}

i

N

N

i i i ixb L G
i
M

x

b b x x

b y yx x
,      (4) 

where ( )b is defined as the entropy of the distribution ( )b x , 
and ( )i ix is defined as (2), and ( , )y x is  

[ ]
2

( )1( , ) exp{ }
22

k kk N
y H x

y x .     (5) 

Similar as that in [4], ( )b  can be approximated by the 
Bethe free energy defined as  

1 1

( ) ( ) ( )
N M

Bethe i
i

b b I b ,                    (6) 

in which ( )iH b  is the entropy of ( )i ib x  and ( )I b is a 
mutual information term defined as  

[ ]
[ ]

( , )
( ) ( , ) log

( )Nx
i ii N

b y
I b b y

b x

x
x  .         (7) 

By substituting ( )b in (4) with (6), combining the new 
objective function with the constraints in (3) through 
Larangian multipliers, and setting the derivative as 0, the 
formulas of LBP can be derived (refer to [4] for more 
details), which will provide  approximations of [ ]{ ( | )}i i Np x y .   

In this paper, a weighted version of Bethe free energy is 
proposed as  

1 1

( ) ( ) ( )
N M

weight i
i

b b I b .                 (8) 

In TRW-BP, { }  are defined as factor appearance 
probabilities [9]. In this paper, { } are relaxed as the 
weights satisfying 

1
0,

M

M .                                  (9) 

Similar as the derivation of LBP above, replace ( )b  in (4) 
with (8), the weighted BP formulas can be derived as  

1

[ ]\

1( ) ( ) ( ) ( )i n i i i i i ii
M

m x x m x m x
Z

         (10) 

1/
[ ]

[ ]\

1( ) ( ) ( )i i j N j ji
j i j N i

m x dx x m x
Z

,   (11) 

[ ]

1( ) ( ) ( )i i i i i ii
M

m x x m x
Z

,                                 (12) 

where iZ , iZ and iZ  are normalization factors, (Refer 
to the appendix of [9] for the proof). Based on the factor 
graph theory [10], [ ]i N[ ][ and [ ]M[ ] are variable and 
factor nodes respectively. (10) and (11) are the 
2MN messages exchanging between M factor nodes and 
N variable nodes. The message passing procedures will be 
repeated many times until some termination conditions are 
satisfied. (12) are the beliefs of variables [ ]{ }i i Nx . Once 
{ } are set as constant 1, (10) ~ (12) will degenerate to be 
the conventional LBP. Based on the “probability damping” 
introduced in [8], (12) can be modified as 

1 1

[ ]

1( ) [ ( )] [ ( ) ( )]
i

t t
i i i i i i i ii

M

m x m x x m x
Z i i[ ( )]i [ ( )][[ ( )]([ ( )]((
Z

,     (13) 

in which t indicates the current iteration and  is the 
damping parameter (superscript t  starts from 0). (10), (11) 
and (13) are the key formulas for WDBP. In this paper, 

0 ( ) 1i im x , and 1( )t
i im x  will be recalculated iteratively for 

the estimation of the mean and variance of the variable ix , 
which will be applied to update the prior signal distribution 
parameters.  
 
3.2. Derivation of WDAMP 
 
Since multiple integrals are involved in (11), the complexity 
of WDBP is too high for practical application, the key 
derivation of WDAMP in this subsection starts from the 
simplification of (11). . 

Based on Hubbard-Stratonovich transform and Taylor 
expansion, (11) can be simplified as [6] 

21( ) exp{ }
2

i
i i i i ii

A
m x x B x

ZZ iZ
exp{e p{i e p{

Z
{exp{exp{exp{  ,          (14) 
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where 
2

2 2 2 2

( )
,

i j jj ii
i i

j j j jj i
j i

H y H aH
A B

H v H v
, 

and 2 2( ), ( )i i i i i i i i i i ia dx x m x v dx x m x a . 
Substitute (14) into (10) and (13), then 
1

2 1

1 1

( )

1( ; , ( ) , , )

t
Mi i

i i
t t
x x M M

i i i i

m x
B B

x
A A A A

   (15) 

1 2 1 2 1 1( ) [ ( )] [ ( ; ,( ) ,( ) , )]t t t t t t
i i i i i x x i im x m x x R       (16) 

in which we define 

2 2

2 2

2 ( ) /2

2

( ; , , , )
1 [(1 ) ( ) ( , , )]eˆ2

(1 ) ( ) ( , , )

x x

x R
x x

x x

x R

p x p x
Z

x x 2 )2
x x,, 2
x ,

,          (17) 

2 2

2 22 2

2 2 2 2
/2 2

2 2 2 2

( )/2/2

2 2 2 2 2 2

(1 )1 , ,ˆ2
ˆ [(1 ) / ] / 2

( ) / ( )

x x

R x x x
x x

x x

GR
x x

x x x

Rp
e

Z

Z p e p e

G R

2

/ ] // ] // ] /

2 2
x

2x 2

2
2

2
xx,2 2x 2 22 2

22
2 22 2RR

2 22 2222

xx
(((( 2 )/22 )/2)/2)/2)/2) (18) 

and 

    

1 2

1

1( ) ,

.

t
i

i

it
i

i

A

B
R

A

                          (19) 

Until now, (14) ~ (16) compose a new version of 
WDBP equations, which have been simplified significantly 
relative to (10), (11) and (13). However, they are still too 
complex and can be simplified further.  

If we define 
2( ) (1 ) ( ) ( , ,( ) )t t t t t

i i i i i i i im x x x ,            (20) 

the second term of (16) can be expressed, based on (17), as  
2

# # # #( ;:) (1 ) ( ) ( , , )i i ix x x ,             (21) 

where parameters 2
# # #{ , , }  can be determined by (18) 

explicitly. Substituting (20) and (21) into (16), 1( )t
i im x can 

be approximated as 1 1 1 2 1(1 ) ( ) ( , ,( ) )t t t t
i i i ix x , in 

which 
2 2

1 1 2 #
2 2

#

( )
1 / , ( )

(1 )( )

t
t t i
i i t

i

A Z          (22) 

2 2
1 # #

2 2
#

(1 )( )
(1 )( )

t t
t i i
i t

i

                                (23) 

where
1 2

1 1#
1 2

#

( )
( ) ( ) exp{ }

2( )

t t
t i i
i t t

i i

G
Z A , 

2 2

2 2
# #
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#

(1 ) /21 1 1
# # #

( ) (1 ) / ( 2 )
(1 ) / ( 2 ) (1 ) (1 )

t t
i it t

i i
t t
i i

A e

e
2 2 2 2
# #

2 2
#

( ) (1 )( )
(1 )( )

t t
i i

t
i

G . 

If we define the mean and variance of variable ix  as  

1 1( )t t
i i i i ia dx x m x                               (24) 

1 2 1 1 2( ) ( )t t t
i i i i i iv dx x m x a                 (25) 

and define  

i i
i

H a , 2
i i

i

V H v               (26) 

(26), (19), (24) and (25) can be simplified, following the 
procedures (33) ~ (44) in [6], as  

1 2t t
i i

i

V H v                                                         (27) 

1 2
2

( )t
t t t

i i i iti i

y
H a H v

V
                    (28) 

2
1 2 1

2 1( ) ( )it
i t

H

V
                                    (29) 

1 2 1
1

2 2 1

[ ( ) / ( )]

[ / ( )]

t t
it t

i i t
i

H y V
R a

H V
  (30) 

1 1 1 1 1 1 2 1 2 1 2, (( ) ( ) ) ( )t t t t t t t t
i i i i i i i ia v a   (31) 

in which the iteration is started from 0t , 0 0V , 
0 1iv , 0 0ia  for [ ]M  and [ ]i N . The related 

parameters in (31) are calculated based on (22) and (23). 
Because H is a column normalized matrix, 2

iH in (27) ~ (30) 
can be approximated as 1/ M . The complexity of the 
algorithm can be decreased by half with the cost of minor 
performance loss. 
 
3.2. Parameter Update and Weight Choice 
 
The signal parameters are updated as follows 

2 2

/ ,
( ) ( ( ) ) /

t t
x ii

t t t
x i ii

a K

v a K
,              (32) 

which are initialized as 0 0x  and 2 0( ) 1x . Until now, 
(27) ~ (32)  represent the whole procedures of WDAMP, 
which will be executed iteratively until the reconstructed 
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signal satisfy some predefined precision requirements or 
reach the maximum iteration number.  (31) will output the 
final estimated mean and variance of x . 

How to find the optimal weight set { }  under the 
constraint of (9) is the key for WDAMP. In this paper, the 
optimal weights are obtained by trial. WDAMP will be 
repeated many times, and every time the weights are 
generated uniformly among [0,1] , and normalized to satisfy 
(9). Calculate the error 2ˆ|| - ||y Hx ( x̂ is the reconstructed 
signal), and the minimum error will correspond to the 
optimal weights. The theoretical derivation of the optimal 
weights is our future work. 
 

4. SIMULATION RESULTS 
 

In simulation, SNR is defined as 2 2
10 210log (|| || /( ))My dB, 

and mean square error (MSE) is defined as 2 2ˆ|| || / || ||x x x . 
The maximum iteration for AMP is 50. In WDAMP, 30 
trials are used for the weights selection. In the figures below, 
“AMP” represents normal AMP [6], and “damp-AMP” is 
the special case of WDAMP when all the weights are 1.  
 
4.1. 1-D Gaussian signal reconstruction  
 
In this test, the non-zero elements of the 1-D signal are zero-
mean Gaussian distributed with variance of 1. The length of 
the signal is 800, the number of non-zero atoms is 200. The 
damping parameter is set to be 0.3.  In the first experiment, 
the signal reconstruction MSE of AMP, damp-AMP and 
WDAMP are compared for different measurements. SNR is 
fixed as 25dB. From Figure 1, the adoption of probability 
damping improves the performance of AMP significantly, 
and the weighting provides further improvement. This 
improvement diminishes when the number of measurements 
is larger than 420.  
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Fig.1. Signal Reconstruction under different M   

Figure 3 compared NMSE performance under different 
SNR for fixed number of measurements (M=380). We see 
that, when SNE increase from 15dB to 25dB, both the 

improvements brought by probability damping solely and by 
weighting-damping jointly increase. WDAMP outperform 
normal AMP a lot at high SNR. 
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         Fig.2. Signal reconstruction under different SNR 
 
4.2. 2-D image reconstruction  
 
For 2-D image reconstruction, 64x64 Mondrian image is 
used, and level-4 Haar wavelet transform is adopted. The 
SNR is fixed to be 25 dB.  The number of non-zeros is 
calculated according to the rule that the largest K  
decomposition coefficients will maintain 99% energy of the 
total coefficients. From Figure 3, we see that, with the 
increase of the measurement number, the performance gain 
brought by weighting mechanism is steady, but the gain 
brought by damping technique decreases.  

    
1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

0.08

0.09

0.1

0.11

0.12

0.13

Measurement Number

M
S

E

 

 

AMP

damp-AMP

WDAMP

 
             Fig.3. Image reconstruction performance 

5. CONCLUSION 
 
In this paper, based on the tree-reweighted loopy belief 
propagation and probability damping technique, a new 
weighted-damped LBP is constructed, from which a new 
version of approximate message passing algorithm 
(WDAMP) is formulated. Simulation results show that 
WDAMP outperforms conventional AMP on both 1-D and 
2-D signal reconstruction. 
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