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ABSTRACT

Numerous algorithms have been proposed recently for sparse sig-

nal recovery in Compressed Sensing (CS). In practice, the number

of measurements can be very limited due to the nature of the prob-

lem and/or the underlying statistical distribution of the non-zero el-

ements of the sparse signal may not be known a priori. It has been

observed that the performance of any sparse signal recovery algo-

rithm depends on these factors, which makes the selection of a suit-

able sparse recovery algorithm difficult. To take advantage in such

situations, we propose to use a fusion framework using which we

employ multiple sparse signal recovery algorithms and fuse their es-

timates to get a better estimate. Theoretical results justifying the

performance improvement are shown. The efficacy of the proposed

scheme is demonstrated by Monte Carlo simulations using synthetic

sparse signals and ECG signals selected from MIT-BIH database.

Index Terms— Compressed Sensing, Fusion, Sparse Recovery,

Support Recovery, Signal Reconstruction

1. INTRODUCTION

Though numerous algorithms have been proposed recently for sparse

signal recovery in Compresses Sensing (CS), the performance of any

algorithm depends on many parameters like signal dimension, spar-

sity level, number of measurements, and the underlying statistical

distribution of the non-zero elements of the signal. It has been ob-

served that none of the algorithms outperforms others in all ranges

of these parameters [1,2]. In many applications, the number of mea-

surements are very limited and/or the underlying statistical distribu-

tion of the non-zero values may not be known a priori. The sparse

signal recovery in this context carries significant interest in CS. To

enhance the sparse signal recovery in such situations, we propose

to employ multiple sparse recovery algorithms, working with differ-

ent principles, and fuse their estimates to get a better signal estimate

which is often better than the best in the group.

The idea of combining information from several sources in or-

der to form a better unified picture has been extensively studied in

the context of data fusion [3]. Fusion of multiple estimators that use

different dictionaries were discussed in [4] and [5]. Recent Machine-

learning and Statistics literature [6,7] suggested fusion of a group of

competing estimators using exponential weights leading to an esti-

mator better than the best in the group. For signal denoising applica-

tions, Orthogonal Matching Pursuit (OMP) with randomization was

proposed in [8] to get several signal representations and fusion was

performed by plain averaging.

Relation to prior work: To the best of our knowledge, [9] was the

first to discuss a fusion approach for sparse signal recovery in CS

where a fusion framework for greedy pursuits was introduced. The

fusion algorithm, Fusion of Greedy Pursuits (FuGP), proposed in [9]

has many shortcomings. FuGP was discussed only in the context of

greedy pursuits. FuGP first forms the common support-set which

contains the common atoms in the estimated support-sets of the two

participating greedy algorithms. By choice, all the atoms in this

common support-set are included in the support-set estimated FuGP.

No theoretical support was given for this choice and it became a main

hurdle to theoretically analyse FuGP. This choice also made FuGP to

restrict the number of maximum participating algorithms as two. To

alleviate these drawbacks, we propose another algorithm which we

referred to as Fusion of Algorithms for Compressed Sensing (FACS)

in this paper. Unlike FuGP, FACS is general in nature and do not

put any restriction on the nature of the participating algorithm or

the maximum number of participating algorithms. We provide theo-

retical guarantees for the proposed algorithm and the reconstruction

performance is verified using numerical experiments.

2. COMPRESSED SENSING: BACKGROUND

Consider a standard CS measurement setup where a K-sparse signal

x ∈ R
N is acquired through linear measurements via

b = Ax+w, (1)

where A ∈ R
M×N represents the measurement matrix, b ∈ R

M

represents the measurement vector, and w ∈ R
M denotes the addi-

tive measurement noise present in the system. CS exploits the sparse

structure of the signal and deals with methods which help to reduce

the number of measurements without sacrificing the signal recon-

struction performance. In CS setup, we assume K < M ≪ N .

The sparse signal reconstruction task in CS involves: (i) estimation

of the sparsity level, (ii) identification of the indices of non-zero el-

ements (also known as support-set), and (iii) estimation of the non-

zero magnitudes. In this paper, we assume that the sparsity level K
is known. Note that if we can estimate the support-set, the non-zero

values can be efficiently found by solving a least-squares (LS) prob-

lem. The properties of a sparse recovery algorithm can be analysed

using Restricted Isometry Property (RIP) [10, 11] of the measure-

ment matrix which is defined as follows.

Definition 1. [10, 11] Assume that for A ∈ R
M×N , there exist a

constant δK ∈ (0, 1) with 0 < K < M which satisfies

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (2)

Notations: Bold upper case and bold lower case Roman letters denote
matrices and vectors, respectively. Calligraphic letters and upper case Greek
alphabets are used to denote sets. ‖.‖p denotes the pth norm. AT denotes the
column sub-matrix of A where the indices of the columns are the elements
of the set T . xT denotes the sub-vector formed by those elements of x

whose indices are listed in the set T . T c denotes the complement of the set
T with respect to the set {1, 2, . . . , N}. supp(x) denotes the set of indices
(coordinates) of non-zero elements of x, i.e., supp(x) = {i : xi 6= 0}. For
a set T , |T | denotes its cardinality (size), and for a scalar c, |c| denotes the
magnitude of c. A† denotes the transpose and pseudo-inverse of the matrix
A, respectively.
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for all K-sparse x. Then A is said to satisfy Restricted Isometry

property (RIP) with order K. Restricted Isometry Constant (RIC) is

defined as the smallest δK which satisfies (2).

3. FUSION FRAMEWORK

The motivation for our proposed fusion framework was shown by

using an exploratory experiment in Section III of [9]. The exper-

iment and observations are not repeated here for brevity of space.

However, it is strongly recommended to read Section III of [9] for a

detailed discussion on the fusion framework.

3.1. Fusion of Algorithms for Compressed Sensing (FACS)

Assume that we are employing P sparse recovery algorithms

(algorithm-i, i = 1, 2, . . . , P ), which work with different prin-

ciples, to recover the sparse signal x using (1). Let x̂i and T̂i repre-

sent the sparse signal and support-set estimated by the algorithm-i,

(1 = 1, 2, . . . , P ). Note that many sparse recovery algorithms (e.g.,

l1-minimization methods) may return a signal estimate with more

than K non-zero elements. In such cases, x̂i is taken as the best

K-sparse approximation of the estimated signal and T̂i = supp(x̂i)

such that |T̂i| = K. Let us define the joint support-set Γ ,
P
∪
i=1

T̂i

and we assume that R , |Γ| ≤ M . Now, note that the joint

support-set Γ will be at least as rich, in terms of correct atoms, as

the support-set estimated by the best participating algorithm in the

group. Since we choose algorithms working with different princi-

ples as participating algorithms, it is not surprising that Γ can often

contain more correct atoms than the support-set estimated by the

best algorithm in the group. The exploratory experiment in Section

III of [9] also justifies this. Hence, if we can recover all the cor-

rect atoms in Γ, we are likely to improve the signal reconstruction.

Keeping this in mind, in FACS we estimate the K support-atoms

only from Γ. The main steps involved in FACS are as follows.

1. Support Merging: Γ =
P∪

i=1
T̂i

2. Proxy signal estimation: Since we have R = |Γ| ≤ M , using

LS we can form an efficient estimator for signal from Γ.

3. Support identification: The indices of the proxy signal with

K prominent magnitudes constitute the estimated support-set

denoted by T̂ .

4. Sparse signal estimation: The sparse signal estimate x̂ is es-

timated by solving an overdetermined LS problem using T̂ .

The proposed FACS algorithm is summarized in Algorithm 1. FACS

Algorithm 1 FACS

Inputs: A ∈ R
M×N , b ∈ R

M , K, and T̂1, T̂2, . . . , T̂P .

Ensure: | P∪
i=1

T̂i| ≤ M .

Initialization: x̂ = 0 ∈ R
N , v = 0 ∈ R

N .

1: Γ =
P
∪
i=1

T̂i;

2: vΓ = A
†
Γb, vΓc = 0;

3: T̂ = supp(vK); ⊲ (vK is the best K-sparse approximation of v)

4: x̂T̂ = A
†

T̂
b, xT̂ c = 0;

Outputs: x̂ and T̂ .

do not explicitly put any restriction on the number of algorithms, P ,

that can be used as participating algorithms. However, an efficient

LS (step 2 in Algorithm 1) requires a constraint R ≤ M .

Theoretical Guarantees: Next, we theoretically analyse the FACS

(Algorithm 1) using Restricted Isometry Property (RIP) [11]. The

performance analysis is characterized by a measure viz. Signal-to-

Reconstruction-Error Ratio (SRER) [12] which is defined as

SRER ,
‖x‖22

‖x− x̂‖22
, (3)

where x and x̂ denote the actual and reconstructed signal vector,

respectively. Theorem 1 provides a sufficient condition for FACS to

provide SRER improvement over algorithm-i (i = 1, 2, . . . , P ).

Theorem 1. Assume that we have employed P (≥ 2) participat-

ing algorithms to reconstruct the K-sparse signal x from (1). Let

x̂i and T̂i denote the sparse signal and support-set estimated by

‘algorithm-i’ (i = 1, 2, . . . , P ). Let the CS measurement matrix

A holds RIP with the Restricted Isometry Constant (RIC) δR+K .

Assuming

∥

∥

∥
xT̂ c

i

∥

∥

∥

2
6= 0, ‖xΓc‖2 6= 0, define ηi =

‖xΓc‖2
∥

∥

∥

∥

x
T̂ c
i

∥

∥

∥

∥

2

and

ζ =
‖w‖2

‖xΓc ‖2
. Let x̂ and T̂ denote the sparse signal and support-set

estimated by FACS algorithms by fusing the estimates of P (≥ 2)
participating algorithms. Then, FACS provides at least SRER gain

of

(

(1−δR+K)2

(1+δR+K+3ζ)ηi

)2

over the ‘algorithm-i’ if ηi <
(1−δR+K)2

1+δR+K+3ζ
.

Proof: Due to lack of space, only an outline of the proof is given

here. A detailed proof can be found in an extended version of this

work [13]. We have,

‖x− x̂‖2 ≤ ‖xT̂ − x̂T̂ ‖2 + ‖xT̂ c‖2. (4)

Using Proposition 3.1 in [14], which is due to RIP, we can show that

‖xT̂ − x̂T̂ ‖2 ≤ δR+K

1− δR+K

‖xT̂ c‖2 +
1√

1− δR+K

‖w‖2 . (5)

Substituting (5) in (4), we get

‖x− x̂‖2 ≤ 1

1− δR+K

‖xT̂ c‖2 +
1√

1− δR+K

‖w‖2 . (6)

Now, defining T̂∆ , Γ \ T̂ , we can show that

‖xT̂ c‖2 ≤ ‖xΓc‖2 + ‖xT̂∆
‖2. (7)

Using reverse triangle inequality, we get

∥

∥

∥
xT̂∆

∥

∥

∥

2
≤

∥

∥

∥
(vΓ)T̂∆

∥

∥

∥

2
+ ‖vΓ − xΓ‖2 . (8)

Using the fact

∥

∥

∥(vΓ)T̂∆

∥

∥

∥

2
≤ ‖(vΓ − xΓ)‖2 in (8), we get

∥

∥

∥
xT̂∆

∥

∥

∥

2
≤ 2 ‖(vΓ − xΓ)‖2 . (9)

Using Proposition 3.1 in [14], we can show that

‖(vΓ − xΓ)‖2 ≤ δR+K

1− δR+K

‖xΓc‖2 +
1

1− δR+K

‖w‖2 . (10)

Now, using (9) and (10) in (7), we get

‖xT̂ c‖2 ≤ 1 + δR+K

1− δR+K

‖xΓc‖2 +
2 ‖w‖2

1− δR+K

. (11)
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Fig. 1: Synthetic sparse signals: Performance of FACS in terms of Signal-to-Reconstruction-Noise-Ratio (SRER) vs. Fraction of Measure-

ments, averaged over 10, 000 trials, for Gaussian sparse signals (GSS) and Rademacher sparse signals (RSS) in clean and noisy measurement

cases. Signal dimension N = 500, sparsity level K = 20.

Substituting (11) in (6) and using definitions of ηi and ζ, we get

‖x− x̂‖2 ≤ 1 + δR+K + 3ζ

(1− δR+K)2
ηi ‖(x− x̂i)‖2 . (12)

Finally using (12) we get,

SRER|FACS =
‖x‖22

‖x− x̂‖22

≥ ‖x‖2
‖x− x̂i‖2

×
(

(1− δR+K)2

(1 + δR+K + 3ζ)ηi

)2

= SRER|
algorithm-i

×
(

(1− δR+K)2

(1 + δR+K + 3ζ)ηi

)2

.�

Now, let us assume that

∥

∥

∥
xT̂ c

i

∥

∥

∥

2
= 0 for some i ∈ {1, 2, . . . , P}

which is not considered in Theorem 1. In such case, all the correct

atoms are already identified by algorithm-i. Hence, further im-

provement over algorithm-i is not possible by FACS. Next, consider

‖xΓc‖2 = 0 which implies that all the correct atoms are included in

the joint support-set Γ. In such cases, with the restriction R ≤ M ,

the LS step (step 2 in Algorithm 1) can efficiently estimate the

correctly estimate the support atoms.

Since FACS uses multiple participating algorithms the compu-

tational complexity of FACS is a little more than the sum of com-

putational complexities of individual participating algorithms. The

additional complexity is mainly due to the LS used in Algorithm 1.

4. NUMERICAL EXPERIMENTS AND RESULTS

In CS, the strive is to reduce the number of measurements and hence

the sparse recovery in lower measurement cases carry significant in-

terest. For numerical experiment in such cases we define the frac-

tion of measurements, α , M/N . We used OMP, SP, and BP

(Basis Pursuit)/BPDN (Basis Pursuit DeNoising) as the participat-

ing algorithms fro sparse signal recovery. BP was used for clean

measurement cases whereas BPDN was used in noisy measurement

cases. For notation brevity, we use BP to denote both BP and BPDN

throughout the paper. OMP and SP were implemented in Matlab

and for BP/BPDN, we used l1-magic toolbox [15]. It may be noted

that BP/BPDN will not directly estimate the support-set. We choose

the indices corresponding to the K-largest magnitudes of the signal

estimate as the estimated support-set of BP/BPDN, in our simula-

tions. We use FACS(OMP,SP) to denote FACS using OMP and SP

as the participating algorithms. FACS(OMP,SP,BP) denote FACS
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with OMP, SP, and BP as the participating algorithms.

4.1. Synthetic Sparse Signals

For simulations with synthetic sparse signals, we followed the

simulation setup described in detail in Section IV.B of [9]. For

noisy measurement simulations, we define Signal-to-Measurement-

Noise-Ratio (SMNR) as SMNR , E{‖x‖22}/E{‖w‖22}, where

E{‖w‖22} = σ2
wM . As in [9], we used Gaussian sparse signals

(GSS) and Rademacher sparse signals (RSS) with dimension 500

and sparsity level 20. This 4% level of sparsity closely resembles

many real application scenarios [16]. We used 100 realizations of

A and for each realization of A, we randomly generated 100 sparse

signals and average SRER is calculated. To evaluate the perfor-

mance of FACS we conducted two experiments which are explained

below.

Experiment 1: In the first experiment, we used FACS with OMP

and SP as participating algorithms and the results are shown in

Fig. 1(a), Fig. 1(b), Fig. 1(d), and Fig. 1(e). The performance of

FACS and FuGP were similar and the results of FuGP are not shown

here. It is interesting to note that OMP performed better than SP for

GSS and vice-versa for RSS. This clearly shows that if the sparse sig-

nal distribution is not known a priori, we will not be able to achieve

the best performance. As proposed, for both GSS (refer Fig. 1(a)

and Fig. 1(b)) and RSS (refer Fig. 1(d) and Fig. 1(e)), FACS showed

a better SRER than the best participating algorithm in clean as well

as noisy measurement cases. For example, for GSS, in the clean

measurement case (refer Fig. 1(a)), at α = 0.18, FACS(OMP,SP)

gave 10 dB improvement over SP and 6.5 dB improvement over

OMP. In the noisy measurement case (refer Fig. 1(b)), at α = 0.18,

FACS(OMP,SP) showed 5 dB improvement over SP and 2.5 dB

improvement over OMP, for Gaussian sparse signals. For RSS in

clean measurement case, at α = 0.24 FACS(OMP,SP) resulted in

15.8 dB and 2.5 dB SRER improvement respectively over OMP and

SP. The same trend can be seen noisy measurement case also and

at α = 0.24 FACS(OMP,SP) showed 12.9 dB and 1.9 dB SRER

improvement over OMP and SP respectively.

Experiment 2: To show the scalability of FACS we extended Ex-

periment 1 to reconstruct the sparse signal using FACS with OMP,

SP, and BP as the participating algorithms. Note that FuGP do not

support fusion of more than two participating algorithms. To save

space, we have shown only the results for GSS which are shown in

Fig. 1(c) and Fig. 1(f). It can be seen that FACS(OMP,SP,BP) further

improved SRER as compared to FACS(OMP,SP). For example, for

α = 0.18, FACS(OMP,SP,BP) improved the performance by 4.9
dB and 0.6 dB as compared to FACS(OMP,SP) in clean and noisy

measurement case respectively.

Reproducible Research: In the spirit of reproducible research

[17], we provide necessary Matlab codes publicly available from

http://www.ece.iisc.ernet.in/∼ssplab/Public/FACS.tar.gz. The code

reproduces the simulation results shown in Fig. 1. We have also

done simulations for FACS with four participating algorithms, the

fourth algorithm being Compressive SAmpling Matching Pursuit

(CoSAMP) [14]. The downloadable folder also contains codes for

simulating FACS using all eleven combinations (
(

4
2

)

+
(

4
3

)

+
(

4
4

)

) of

the four participating algorithms OMP, SP, BP, and CoSAMP. The

code also include performance comparison Another performance

metric called Average Support Cardinality Error (ASCE) [18] was

also used for performance evaluation.

4.2. Real Compressible Signals

To evaluate the performance of FACS on real-world signals, we

conducted experiments on ECG signals selected from MIT-BIH Ar-

rhythmia Database [19]. ECG signals are compressible and have a

good structure for sparse decompositions. We used the same simula-

tion setup as used in [20] and [21]. Gaussian measurement matrices

with appropriate sizes were used to vary the number of measure-

ments, M, from 256 to 480 with an increment of 32. As earlier, here

also we employed OMP, SP, and BP as the participating algorithms

for FACS. We assumed a sparsity level 128, and the reconstruction

results are shown in Fig. 2.
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Fig. 2: Real-world signals: Performance of FACS (Signal-to-

Reconstruction-Error Ratio (SRER) vs. Number of Measurements)

for ECG signals selected from MIT-BIH Arrhythmia Database [19].

Similar to the case of synthetic signals, for ECG signals

also FACS(OMP,SP) resulted in a better SRER as compared to

both the participating algorithms OMP, and SP. For M = 288,

FACS(OMP,SP) gave 6.8 dB and 5.8 dB SRER improvement over

OMP and SP respectively. By using BP as the third participating

algorithm, FACS(OMP,SP,BP) further improved the SRER by 1.8
dB than FACS(OMP,SP) for M = 288. A similar trend can be

observed for other values of M in Fig. 2, showing the advantage of

using FACS in real-life applications.

5. CONCLUSIONS

Using a fusion framework we proposed an algorithm, FACS, for

sparse signal recovery which fuses the estimates of multiple sparse

recovery algorithms. FACS is general in nature and can accommo-

date any sparse signal recovery algorithm as a participating algo-

rithm. Using RIP, theoretical guarantees of FACS were also dis-

cussed. Numerical simulations showed that the sparse signal esti-

mate of FACS often outperforms the sparse signal estimate of the

best algorithm in the group. The advantage of using FACS on real

life applications was shown by experiments conducted with ECG

signal records from MIT-BIH database.

6. ACKNOWLEDGEMENTS

We would like to thank the authors of [20, 21] for sharing the code,

using which we conducted the experiment resulted in Fig. 2.

5863



7. REFERENCES

[1] A. Maleki and D.L. Donoho, “Optimally Tuned Iterative Re-

construction Algorithms for Compressed Sensing,” IEEE J.

Sel. Topics Signal Process., vol. 4, no. 2, pp. 330 –341, Apr.

2010.

[2] Bob L. Sturm, “A Study on Sparse Vector Distributions

and Recovery from Compressed Sensing,” CoRR, vol.

abs/1103.6246, 2011.

[3] Martin E. Liggins, David L. Hall, and James Llinas, Handbook

of Multisensor Data Fusion: Theory and Practice, Second Edi-

tion, CRC Press, 2008.

[4] M.J. Fadili, J.-L. Starck, and L. Boubchir, “Morphologi-

cal Diversity and Sparse Image Denoising,” in 2007 IEEE

International Conference on Acoustics, Speech and Signal

Processing (ICASSP), Apr. 2007, vol. 1, pp. I–589 –I–592,

doi:10.1109/ICASSP.2007.365976.

[5] Jean-Luc Starck, David L. Donoho, and Emmanuel J. Candes,

“Very high quality image restoration by combining wavelets

and curvelets,” pp. 9–19, 2001, doi:10.1117/12.449693.

[6] Arnak S. Dalalyan and Alexandre B. Tsybakov, “Aggrega-

tion by exponential weighting, sharp PAC-Bayesian bounds

and sparsity,” Machine Learning, vol. 72, no. 1-2, pp. 39–61,

2008, doi:10.1007/s10994-008-5051-0.

[7] Arnak S. Dalalyan and Alexandre B. Tsybakov, “Mirror av-

eraging with sparsity priors,” Bernoulli, vol. 18, no. 3, pp.

914–944, 2012, doi:10.3150/11-BEJ361.

[8] M. Elad and I. Yavneh, “A Plurality of Sparse Representa-

tions Is Better Than the Sparsest One Alone,” IEEE Trans.

Inf. Theory, vol. 55, no. 10, pp. 4701 –4714, Oct. 2009,

doi:10.1109/TIT.2009.2027565.

[9] Sooraj K. Ambat, Saikat Chatterjee, and K.V.S. Hari, “Fusion

of Greedy pursuits for Compressed Sensing Signal Reconstruc-

tion,” in 2012 Proceedings of the 20th European Signal Pro-

cessing Conference (EUSIPCO), Aug. 2012, pp. 1434 –1438.

[10] Emmanuel J. Candes, Justin K. Romberg, and Terence Tao,

“Stable signal recovery from incomplete and inaccurate mea-

surements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207–

1223, 2006.

[11] E.J. Candès and T. Tao, “Near-Optimal Signal Recovery From

Random Projections: Universal Encoding Strategies?,” IEEE

Trans. Inf. Theory, vol. 52, no. 12, pp. 5406 –5425, Dec. 2006,

doi:10.1109/TIT.2006.885507.

[12] S. Chatterjee, D. Sundman, M. Vehkapera, and M. Skoglund,

“Projection-Based and Look-Ahead Strategies for Atom Selec-

tion,” IEEE Trans. Signal Process., vol. 60, no. 2, pp. 634

–647, Feb. 2012, doi:10.1109/TSP.2011.2173682.

[13] Sooraj K. Ambat, Saikat Chatterjee, and K.V.S. Hari, “Fusion

of Algorithms for Compressed Sensing,” IEEE Trans. Signal

Process., 2012, submitted.

[14] D. Needell and J.A. Tropp, “CoSaMP: Iterative signal recov-

ery from incomplete and inaccurate samples,” Appl. Comput.

Harmon. Anal., vol. 26, no. 3, pp. 301 – 321, 2009.

[15] “l1-magic toolbox,” http://users.ece.gatech.edu/

˜justin/l1magic.

[16] E.J. Candes and M.B. Wakin, “An Introduction To Compres-

sive Sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp.

21 –30, Mar. 2008.

[17] P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible

research in signal processing,” IEEE Signal Process. Mag.,

vol. 26, no. 3, pp. 37 –47, May 2009.

[18] Sooraj K. Ambat, Saikat Chatterjee, and K.V.S. Hari., “Adap-

tive selection of search space in look ahead orthogonal match-

ing pursuit,” in 2012 National Conference on Communications

(NCC), Feb. 2012, pp. 1–5, doi:10.1109/NCC.2012.6176852.

[19] G.B. Moody and R.G. Mark, “The impact of the MIT-BIH

Arrhythmia Database,” IEEE Eng. Med. Biol. Mag., vol. 20,

no. 3, pp. 45 –50, May-June 2001.

[20] R.E. Carrillo, L.F. Polania, and K.E. Barner, “Iterative algo-

rithms for compressed sensing with partially known support,”

in 2010 IEEE International Conference on Acoustics Speech

and Signal Processing (ICASSP), Mar. 2010, pp. 3654 –3657.

[21] Rafael E. Carrillo, Luisa F. Polania, and Kenneth E. Barner,

“Iterative hard thresholding for compressed sensing with par-

tially known support,” in 2011 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), May

2011, pp. 4028 –4031.

5864


