
DISTRIBUTED PRINCIPAL COMPONENTS ANALYSIS IN SENSOR NETWORKS

Abiodun Aduroja∗, Ioannis D. Schizas∗ and Vasileios Maroulas†

* Department of EE, Univ. of Texas at Arlington, 416 Yates Street, Arlington, TX 76010, USA
† Department of Math, Univ. of Tennessee at Knoxville, Knoxville, TN 37996, USA

ABSTRACT

Estimation of the principal eigenspace of a data covariance matrix
is instrumental in applications such as data dimensionality reduction
and denoising. In sensor networks the acquired data are spatially
scattered which further calls for the development of distributed prin-
cipal subspace estimation algorithms. Toward this end, the standard
principal component analysis framework is reformulated as a sepa-
rable constrained minimization problem which is solved by utiliz-
ing coordinate descent techniques combined with the alternating di-
rection method of multipliers. Computationally simple local updat-
ing recursions are obtained that involve only single-hop inter-sensor
communications and allow sensors to estimate the principal covari-
ance eigenspace in a distributed fashion. Adaptive implementations
are also considered that allow online information processing. Nu-
merical tests demonstrate that the novel algorithm has the potential
to achieve a considerably faster convergence rate and better steady-
state estimation performance compared to existing alternatives.

Index Terms— Distributed processing, principal component
analysis

1. INTRODUCTION

Data acquired across a network of sensors monitoring a field, often
lie on a small dimensional subspace. The presence of a few sources
in the sensed field leads to a low-rank data covariance matrix. Esti-
mating the principal eigenspace of such covariances is essential for
applications including data dimensionality reduction and sensor data
denoising [1, 2]. Such tasks are tackled via principal component
analysis (PCA) which focuses on recovering the principal covari-
ance eigenvectors and projecting the data on the principal covariance
eigenspace. The projection filters out noise and/or reduces the data
dimensionality in a mean-square error (MSE) optimal way [1, 3].

Traditional PCA techniques have been developed assuming that
all data are gathered at a central processing unit [1, 2, 4]. The dis-
tributed structure of sensor networks, where data are scattered across
sensors, motivates the development of decentralized PCA techniques
that are applicable even under single-hop communications between
neighboring sensors. To this end, data aggregation techniques have
been put forth in [5] to collect sensor data at a fusion center and
perform PCA. A different setting is considered in [6], where training
data are scattered across sensors and consensus-averaging tech-
niques [7, 8] are employed such that each sensor estimates the data
covariance matrix and performs eigenvalue decomposition to re-
cover the principal eigenspace. A distributed scheme is developed
in [9] under the assumption that the data covariance matrix has
a decomposable structure. A more related in-network distributed
PCA scheme was developed in [10], where each sensor estimates a

Work in this paper is supported by the NSF grant CCF 1218079 and
UTA.

specific part of the principal covariance eigenspace by combining
gradient descent iterations [4] with vector and matrix consensus-
averaging to diffuse information across the network.

Different from [5,6], we derive a distributed PCA algorithm that
relies on in-network processing and does not require evaluation of
the whole covariance matrix at a central location, or across all sen-
sors; the latter task has a large communication and computational
cost. Further, no special structure is imposed here on the data co-
variance as in [9]. Our approach entails expressing the standard PCA
cost as a separable constrained minimization problem. This separa-
ble formulation is tackled in a distributed fashion by employing the
alternating direction method of multipliers (ADMM) [11] combined
with block coordinate descent iterations [12] (Sec. 3.1) which leads
to a set of computationally simple local recursions. An adaptive im-
plementation, that facilitates online information processing, is also
developed (Sec. 4). As corroborated by numerical tests, the novel
distributed PCA has the potential to achieve a considerably faster
convergence rate while reaching a better steady-state performance
compared to the consensus-based approach in [10]. This is impor-
tant given the limited life-span of sensor networks.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider an ad hoc sensor network consisting of p sensors that
monitor a field. Each sensor j is able to communicate only with
its single-hop neighbors in Nj , having cardinality |Nj |. Assum-
ing that inter-sensor links are symmetric, the sensor network is
modeled as an undirected connected graph. Sensor j acquires
scalar zero-mean measurements {xτ (j)}pj=1 at discrete time in-
stances τ = 0, 1, 2, . . . , t. The scattered sensor measurements,
stacked in xτ := [xτ (1), . . . , xτ (p)]

T , have covariance matrix
Σx = E[xτx

T
τ]. Let Σx = UxΛxU

T
x denote the eigenvalue de-

composition, where Ux ∈ Rp×p is the eigenvector matrix while the
diagonal Λx contains the corresponding eigenvalues. It is of interest
to estimate, using the sensor data {xτ}tτ=0, the r principal eigen-
vectors of Σx denoted as Ux,r which can be used for denoising,
dimensionality reduction and so on.

The principal eigenspace Ux,r can be found, see e.g. [1], as the
minimizer of

Ĉ = argmin(t+ 1)−1 ∑t
τ=0 ∥xτ −CTCxτ∥22, (1)

with respect to (wrt) C ∈ Rr×p. It turns out that the r principal
eigenvectors of the sample-average covariance estimate Σ̂x,t = (t+

1)−1 ∑t
τ=0 xτx

T
τ , namely Ĉ = Ûx,r , form a minimizer for (1).

After setting yτ = Cxτ , we use (1) to arrive at

(Č, {y̌τ}tτ=0) = arg min
C,yτ

(t+ 1)−1 ∑t
τ=0 ∥xτ −CTyτ |22, (2)

which will be the starting point to create a separable PCA cost that
is amenable to distributed minimization. Applying first-order op-
timality conditions in (2) yields that y̌τ = (ČČT)−1Čxτ which

5850978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

is different from y̌τ = Čxτ . Nonetheless, both (2) and (1) at-
tain the same minimum value when Č in (2) is selected such that
ČT (ČČT)−1Č = Ûx,rÛ

T
x,r . Now let Č = UcScV

T
c denote

the singular value decomposition of Č, where Uc ∈ Rr×r and
Vc ∈ Rp×p contain the left and right singular vectors of Č, while
diagonal matrix Sc contains the singular values. The last two equa-
tions indicate that r left singular vectors of Č corresponding to the
largest singular values, say Uc,r , satisfy Uc,r = Ûx,rW where W
is an arbitrary r × r unitary matrix. Thus, Ux,r can be estimated
from Č in (2) up to a unitary matrix ambiguity.

3. DISTRIBUTED PCA

In order to develop a distributed (D-) PCA algorithm we will rewrite
the centralized PCA cost in (2) in a separable way and then employ
the alternating direction method of multipliers (ADMM) [11,13,14]
combined with block coordinate descent techniques, see e.g., [12],
to split the optimization problem into smaller subtasks that can be
implemented in parallel across sensors. Towards this end, the cost in
(2) can be rewritten as

J(C, {yτ}tτ=0) = (t+1)−1 ∑p
j=1

∑t
τ=0(xτ (j)−CT

:jyτ)
2, (3)

where C:j denotes the jth column of C for j = 1, . . . , p. Sensor j
is responsible for forming updates for C:j that estimates the jth row
of Ux,r . Since summands in (3) are coupled through the vectors yτ ,
separate minimization of

∑t
τ=0(xτ (j) − CT

:jyτ)
2 at sensor j will

not return the minimizer of (2). A separable PCA formulation that is
equivalent to the centralized minimization problem in (2) is obtained
by introducing the auxiliary vectors yτ,j for each sensor j and im-
pose the consensus constraint yτ,1 = yτ,2 = . . . = yτ,p. The
following separable constrained optimization problem is obtained

(Č, {y̌τ,j}p,tj=1,τ=0) = argmin(t+ 1)−1
p∑

j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2,

s. to yτ,j = yτ,j′ , j′ ∈ Nj and τ = 0, . . . , t (4)

Since the network is connected it follows readily that (4), (3) and (2)
are equivalent in the sense that {y̌τ,j = y̌τ}Jj=1.

3.1. Algorithmic Construction

In order to solve (4) in a distributed fashion we employ ADMM
which will allow sensor j to obtain iteratively estimates for the jth
row of Ux via C:j . To facilitate utilization of ADMM, consider
the auxiliary variables zj

′

τ,j for j′ ∈ Nj and τ = 0, . . . , t. Then,
substitute the constraints in (4) with the equivalent ones

yτ,j = zj
′

τ,j and yτ,j = zjτ,j′ for j′ ∈ Nj and j ̸= j′. (5)

The variables zj
′

τ,j are just used to derive the local recursions run
across sensors to find Č:j , and eventually these variables are elimi-
nated. Next, let vj′

τ,j and wj′

τ,j denote the multipliers associated with

the constraints yτ,j = zj
′

τ,j and yτ,j = zjτ,j′ respectively. ADMM
exploits the decomposable structure of the augmented Lagrangian
function [12, Ch. 3] which for (4) is written as

L[C, {yτ,j}t,pτ=0,j=1,v,w] = (t+ 1)−1
p∑

j=1

t∑
τ=0

(xτ (j)−CT
:jyτ,j)

2

+

p∑
j=1

∑
j′∈Nj

t∑
τ=0

[
(vj′

τ,j)
T (yτ,j − zj

′

τ,j) + (wj′

τ,j)
T (yτ,j − zjτ,j′)

]

+ 0.5c

p∑
j=1

∑
j′∈Nj

t∑
τ=0

[
∥yτ,j − zj

′

τ,j∥
2
2 + ∥yτ,j − zjτ,j′∥

2
2

]
, (6)

where c is a positive penalty coefficient, while v and w contain the
multipliers vj′

τ,j and wj′

τ,j , respectively for τ = 0, . . . , t, j′ ∈ Nj

and j = 1, . . . , p. In order to tackle (4) we first employ a block
coordinate descent where we first minimize wrt C while treating the
yτ,j’s fixed and vice versa. ADMM will be utilized when minimiz-
ing (4) wrt to yτ,j , while respecting the consensus constraints in (5).
When minimizing wrt C assuming fixed yτ,j one iteration will be
enough since Č will be found in closed form. However, applica-
tion of ADMM to determine yτ,j for a fixed C, while respecting the
equality constraints in (4), will involve multiple iterations denoted as
K. Multiple recursions (ideally K → ∞) in ADMM will be needed
to enforce the consensus requirement across the yτ,j variables [14].

Now let κ = 0, 1, . . . , denote the index for a coordinate de-
scent cycle and k = 1, . . . ,K indicate the consensus iteration index
within a coordinate cycle. Then κ ·K+k enumerates the total num-
ber of consensus iterations from the beginning after k consensus iter-
ations have been completed during the κth coordinate descent cycle.
One coordinate descent cycle will entail one iteration per sensor to
update C:j’s, and K consensus iterations associated with ADMM.
Specifically, let yτ,j(κK+K) and zj

′

τ,j(κK+K) indicate the most

recent updates for yτ,j and zj
′

τ,j respectively, after K consensus it-
erations have been completed during coordinate cycle κ. Minimiza-
tion of (4) wrt to C:j during coordinate descent cycle κ + 1, while
treating yτ,j as fixed and equal to yτ,j(κK +K), gives that the jth
column of C can be updated at sensor j as

C:j(κ+ 1) =
[∑t

τ=0 yτ,j((κ+ 1)K)(yτ,j((κ+ 1)K))T
]−1

×
∑t

τ=0 yτ,j((κ+ 1)K)xτ (j). (7)

To make the notation more compact let yκ
τ,j(k) := yτ,j(κK +

k), vκ,j′

τ,j (k) = vj′

τ,j(κK + k), wκ,j′

τ,j (k) = wj′

τ,j(κK + k) and

zκ,j
′

τ,j (k) = zj
′

τ,j(κK + k). Then, updates yκ+1
τ,j (k) will be formed

at sensor j for k = 1, . . . ,K by employing the ADMM. The first
step in ADMM, during coordinate descent cycle κ + 1, updates the
Lagrange multipliers using the gradient ascent iterations

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (8)

wκ+1,j′

τ,j (k) = wκ+1,j′

τ,j (k − 1) + c[yκ+1
τ,j (k)− zκ+1,j′

τ,j (k)], (9)

for j′ ∈ Nj , k = 1, . . . ,K and τ = 0, . . . , t. Note that
vκ+1,j′

τ,j (0) = vκ,j′

τ,j (K), thus coordinate cycle κ + 1 starts us-
ing the most up-to-date v’s from cycle κ. The same holds for the
y’s, w’s and z’s. The second step entails minimization of (6) wrt
yτ,j while treating the rest optimization variables as fixed to their
most up-to-date value. It follows that (details omitted due to space
limitations) that for j = 1, . . . , p

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + c|Nj |I

]−1

×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj

(vκ+1,j′

τ,j (k) +wκ+1,j′

τ,j (k))

+c
∑

j′∈Nj
(zκ+1,j′

τ,j (k) + zκ+1,j
τ,j′ (k))

]
. (10)

5851

The third step in ADMM involves forming the updates zκ+1,j′

τ,j (k).

This is done by minimizing (6) wrt zκ+1,j′

τ,j , while fixing the other
variables to their most up-to-date values. Then, it follows

zκ+1,j′

τ,j (k + 1) =0.5[yκ+1
τ,j (k + 1) + yκ+1

τ,j′ (k + 1)]

+ 0.5c−1[vκ+1,j′

τ,j (k) +wκ+1,j′

τ,j (k)], (11)

where j = 1, . . . , p and j′ ∈ Nj . Substituting (11) into the two re-
cursions in (8), it follows that if the Lagrange multipliers are initial-
ized such that v0,j′

τ,j (0) = −w0,j
τ,j′(0), then vκ,j′

τ,j (k) = −wκ,j
τ,j′(k)

for all τ , κ and k, while

vκ+1,j′

τ,j (k) = vκ+1,j′

τ,j (k− 1) + 0.5c(yκ+1
τ,j (k)− yκ+1

τ,j′ (k)), (12)

for j′ ∈ Nj . Thus, sensor j only has to keep track of {vκ,j′

τ,j (k)}j′∈Nj

since wκ,j′

τ,j (k) = −vκ,j
τ,j′(k) becomes redundant. Then, using (11)

and vκ,j′

τ,j (k) = −wκ,j
τ,j′(k) recursion (10) becomes

yκ+1
τ,j (k + 1) =

[
2C:j(κ+ 1)(C:j(κ+ 1))T + c|Nj |I

]−1

×
[
2C:j(κ+ 1)xτ (j)−

∑
j′∈Nj

(vκ+1,j′

τ,j (k)− vκ+1,j
τ,j′ (k))

+c
∑

j′∈Nj
(yκ+1

τ,j (k) + yκ+1
τ,j′ (k))

]
, (13)

where the zκ,j
′

τ,j (k) variables have been eliminated. Using the con-
vergence claims in [14] turns out that if an infinite number of con-
sensus iterations (K → ∞) is applied during coordinate cycle κ+1
then consensus is reached in the sense that limk→∞ yκ+1

τ,j (k) =

(C(κ + 1)C(κ + 1)T)−1C(κ + 1)xτ (the principal component
vectors) for all sensors j = 1, . . . , p, while C(κ+ 1) := [C:1(κ+
1) . . .C:p(κ+ 1)].

Recursions (7), (12) and (13) constitute a batch D-PCA ap-
proach, whereby sensor j keeps track of i) C:j(k+ 1) ∈ Rr×1, that
estimates the jth row of Ux,r; ii) the multipliers {vκ,j′

τ,j (k)}j′∈Nj
;

and iii) the principal components in yκ
τ,j(k+1) for τ = 0, . . . , t. In

a batch setting, sensors first gather t + 1 measurements (t is fixed),
namely x0, . . . ,xt, and then employ the D-PCA algorithm. During
coordinate descent cycle κ + 1 sensor j first forms C:j(κ + 1) via
(7), using its local principal components vector updates yκ

τ,j(K) for
τ = 0, . . . , t. Then, sensor j runs K consensus iterations by carry-
ing out (12) and (13). Specifically, during consensus iteration k + 1
and coordinate cycle κ + 1, it receives from its neighbors j′ ∈ Nj

the r × 1 vectors yκ+1
τ,j′ (k) and updates its multipliers vκ+1,j′

τ,j (k)

via (12). Then, sensor j receives {vκ+1,j
τ,j′ (k)}j′∈Nj

which are used
along with {yκ+1

τ,j′ (k)}j′∈Nj
to form yκ+1

τ,j (k + 1) via (13). For an
increasing number of consensus iterations K → ∞ and coordinate
descent cycles (κ → ∞), C(κ) and yτ,j(κ) converge at least to
a stationary point of the PCA cost in (3). This can be established
using the convergence properties of block coordinate descent and
ADMM in [12] and [11, 14], respectively.

3.2. Adaptive D-PCA

The batch D-PCA algorithm derived earlier is ideal for settings
where estimation performance is more important than real-time in-
formation processing. Further, it should be pointed out that there
are (t + 1)K consensus iterations per coordinate cycle that every
sensor has to carry out for updating {yκ

τ,j}tτ=0. In a setting where
the number of sensor measurements t + 1 is fixed, the previous

property will not cause problems. However, in a time-varying set-
ting where sensors are continuously acquiring data, t will keep
increasing, causing challenges to the applicability of batch D-PCA
due to the increasing memory, communication and computational
requirements. Building on batch D-PCA we derive an adaptive D-
PCA scheme that is capable to process data online, while having a
manageable computational, communication and memory cost.

In batch D-PCA the separable PCA cost in (4) is time-invariant,
i.e. t is fixed. For a constant t batch D-PCA consisted of multiple
coordinate descent cycles that could be run until, e.g., the PCA cost
does not decrease below a desired threshold. In an adaptive setting
sensors acquire new data at every time instant t, thus t is increasing
and the cost (4) will be augmented with new data terms. Thus, it is
pertinent at t to apply a small number of coordinate cycles; here one
coordinate cycle per t is employed. Thus, the time and coordinate
cycle indices coincide, i.e., κ = t. During t there will be K nested
consensus iterations carrying out (12) and (13). Different from batch
D-PCA, (12) and (13) will be carried out only for the most recent
multipliers and principal vectors {vj′

t,j ,yt,j}pj=1, and not for all τ =
0, . . . , t as in the batch implementation.
During t+ 1, adaptive D-PCA updates C:j as

C:j(t+ 1) =

[
t∑

τ=0

yτ,j(K)yT
τ,j(K)

]−1∑t
τ=0 yτ,j(K)xτ (j), (14)

and employs K consensus iterations for updating yt,j and vt,j as

vj′

t+1,j(k) = vj′

t+1,j(k − 1) + 0.5c[yt+1,j(k)− yt+1,j′(k)], (15)

yt+1,j(k + 1) =
[
2C:j(t+ 1)(C:j(t+ 1))T + c|Nj |I

]−1

×
[
2C:j(t+ 1)xt+1(j)−

∑
j′∈Nj

(vj′

t+1,j(k)− vj
t+1,j′(k))

+c
∑

j′∈Nj
(yt+1,j(k) + yt+1,j′(k))

]
, (16)

where k = 1, . . . ,K for (15) and k = 0, 1, . . . ,K−1 for (16), while
coordinate cycle superscripts have been removed since one cycle
takes place per t. The multipliers at t = 0, namely vj,0(0), are ini-
tialized randomly, whereas at time instant t > 0 warm-starts are em-
ployed to set vt,j(0) = vt−1,j(K). Further, during instant t the yt,j

variables are initialized as yt,j(0) = C:j(t)xt(j). Let Mx,t denote
the matrix inverted in (14), and mxy,t :=

∑t
τ=0 yτ,j(K)xτ (j).

Since consensus is applied only for yt,j and vj′

t,j , the updates

yτ,j(K) and vj′

τ,j(K) for τ < t remain constant for the time in-
stances τ + 1, τ + 2, Thus, Mx,t and mxy,t can be adaptively
updated at sensor j as Mx,t = Mx,t−1 + yt,j(K)yT

t,j(K) and
mxy,t = mxy,t−1 + yt,j(K)xt(j), respectively.

Summarizing, adaptive D-PCA will involve the following steps
during t+1: Sensor j updates recursively Mx,t and mxy,t and uses
them to update C:j(t + 1) via (14). Then, K consensus recursions
are employed in order to obtain yt+1,j(K). To this end, the initial-
ization yt+1,j(0) = C:j(t + 1)xt+1(j) and vt+1,j(0) = vt,j(K)
takes place. During consensus iteration k sensor j receives from
its neighbors j′ ∈ Nj vectors yt+1,j′(k) and updates its multi-
pliers vj′

t+1,j(k) via (15). Then, sensor j receives the multipliers
{vj

t+1,j′(k)}j′∈Nj
which are used along with {yt+1,j′(k)}j′∈Nj

to form yt,j(k + 1) via (16). Once yt+1,j(K) are formed across
sensors, the process is repeated.

5852

4. COMMUNICATION AND COMPUTATIONAL COSTS

Next, we study the communication and computational costs associ-
ated with the adaptive D-PCA scheme, summarized in (14), (15) and
(16), and compare it with the related approach in [10]. The computa-
tional complexity for carrying out (14) is O(r2) which is dictated by
the inversion of Mx,t which can be done by employing the matrix
inversion lemma [15, pg. 571]. Updating of vj′

t,j and mxy,t has a
complexity of the order of O(r), while the associated complexity for
forming yt,j is O(r2) which is imposed by the matrix inversion that
again can be carried out using the matrix inversion lemma. Thus, the
computational complexity per time instant t and consensus iteration
in adaptive D-PCA is O(r2). The computational complexity of the
algorithm proposed in [10], abbreviated as DLS-PCA, is also O(r2).

Next, we consider the communication costs associated with D-
PCA and DLS-PCA. In D-PCA, sensor j has to transmit r(|Nj |+1)
scalars per consensus iteration corresponding to the entries of the
multipliers {vj′

t,j(k)}j∈Nj and the local estimate yt,j(k). Given
that at each time instant t there are K consensus iterations taking
place, the total transmission load per sensor during time instant t is
rK(|Nj |+1). In DLS-PCA each sensor has to transmit rK(r+1)
to carry out consensus-iterations involving r× r matrices and r× 1
vectors. If r < |Nj | is smaller than the size of the single-hop neigh-
borhoods then DLS-PCA has a smaller transmission cost, whereas
if r > |Nj | D-PCA will have an advantage. When considering the
reception cost it can be seen that in D-PCA each sensor receives
2rK|Nj | scalars during K consensus iterations pertaining to the
vectors {vj

t,j′(k),yt,j′(k)}j′∈Nj
. However, in DLS-PCA sensor

j receives (r + 1)rK|Nj | ≥ 2rK|Nj | due to the reception of Nj

r × r matrices and r × 1 vectors per consensus iteration. Thus,
D-PCA has a smaller reception cost for r > 1. Even though the
transmission cost of D-PCA may be greater than the one in DLS-
PCA, it will be corroborated via numerical examples that the higher
transmission cost in D-RLS pays off in improved convergence rates
and steady-state performance. The work in [14] thoroughly studied
why ADMM exhibits better convergence properties over consensus-
averaging [7] when it comes to least-squares estimation [14]. Similar
arguments can be carried over the present PCA setting supporting the
better convergence properties of ADMM observed via simulations.

5. NUMERICAL TESTS

Here we compare the performance achieved by the novel adaptive D-
PCA approach with the one corresponding to DLS-PCA in [10]. The
subspace projection estimation error e(t) := ∥CT (t)(C(t)CT (t))−1

C(t) − Ux,rU
T
x,r∥2F with ∥ · ∥F denoting the Frobenius norm, is

used as a performance metric. Such a metric quantifies how ‘close’
the columns of the estimate CT (t) lie on the principal subspace
spanned by the columns of Ux,r . A connected network consisting
of p = 16 sensors, randomly placed in [0, 1] × [0, 1], is consid-
ered. Two sensors communicate as long as their distance is less than
d = 0.3 (communication range). The columns C:j(0) and multi-
pliers vj′

j (0) are initialized randomly. The covariance matrix Σx

is randomly generated as HHT , where H contains normally dis-
tributed entries. Fig. 1 (top) depicts e(t) for the case where D-PCA
and DLS-PCA are estimating r = 1 principal eigenvector of Σx.
D-PCA and DLS-PCA were tested for either K = 5, or K = 12
consensus iterations per time instant t. The parameter c in D-PCA
is set c = 4, while the step-size parameter needed in DLS-PCA was
set to γ = 10−3. Both parameters were determined via numerical
trials such that both approaches achieve the best possible conver-

0 1000 2000 3000 4000 5000 6000 7000

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

t

e
(t
)

D−PCA, K=12

DLS−PCA, K=5

DLS−PCA, K=12

D−PCA, K=5

0 1000 2000 3000 4000 5000 6000 7000

10
−1

10
0

t

e
(t
)

D−PCA, K=15

D−PCA, K=5

DLS−PCA, K=15

DLS−PCA, K=5DLS−PCA, K=5,γ=10
−2

Fig. 1. Subspace projection estimation error e(t) vs. time index t
for r=1 (top); and r=2 (bottom).

gence rate and steady-state performance. A systematic approach
for selecting c is underway. As it can be seen D-PCA exhibits a
much faster convergence rate than DLS-PCA, while it converges to
a lower steady state error e(t). As expected, increasing the number
of consensus iterations K leads to better steady-state estimation
performance for both D-PCA and DLS-PCA. Fig. 1 (bottom) de-
picts e(t) for r = 2. In this case we test D-PCA and DLS-PCA for
either K = 5, or K = 15 consensus iterations. Again e(t) in adap-
tive D-PCA decreases at a faster rate than the DLS-PCA approach,
while the subspace estimation performance improves considerably
as the number of consensus iterations K increases. In order to boost
the convergence rate of DLS-PCA we increased γ to 10−2. The
convergence rate improved, however the magenta curve indicates
considerable fluctuations of e(t).

6. CONCLUDING REMARKS

A distributed PCA scheme was developed for recovering the prin-
cipal data covariance eigenspace across sensors. The approach fol-
lowed entailed: i) Formulation of the PCA cost as a separable con-
strained optimization problem; and ii) application of the coordinate
descent technique combined with ADMM to tackle the separable
PCA minimization formulation in a distributed fashion. Computa-
tionally simple local updating recursions were obtained that involve
only single-hop inter-sensor communications. Numerical examples
demonstrated the improved performance of the novel algorithm over
existing alternatives.

5853

7. REFERENCES

[1] D. R. Brillinger, Time Series: Data Analysis and Theory, Ex-
panded Edition, Holden Day, 1981.

[2] B. Yang, “Projection approximation subspace tracking,” IEEE
Trans. on Sig. Processing, vol. 43, no. 1, pp. 95–107, 1995.

[3] T. Hastie, R. Tibshirani, and D. Friedman, The Elements of
Statistical Learning: Data Mining, Inference and Prediction,
Second Edition, Springer, 2009.

[4] E. Oja and J. Karhunen, “On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random
matrix,” J. Math. Anal. Applicat., vol. 106, no. 1, pp. 69–84,
1985.

[5] Y. Le Borgne, S. Raybaud, and G. Bontempi, “Distributed prin-
cipal component analysis for wireless sensor networks,” Sen-
sors, vol. 8, no. 8, pp. 4821–4850, 2008.

[6] S. V. Macua, P. Belanovic, and S. Zazo, “Consensus-based dis-
tributed principal component analysis in wireless sensor net-
works,” in Proc. of 11th IEEE Workshop on Sig. Proc. Ad-
vances in Wir. Com. (SPAWC), June 2010, pp. 1 –5.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed
averaging,” Systems and Control Letters, vol. 53, pp. 65–78,
Sept. 2004.

[8] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average con-
sensus with least-mean-square deviation,” Journal of Par. and
Distr. Comput., vol. 67, no. 1, pp. 33–46, 2007.

[9] Z. Meng, A. Wiesel, and A. O. Hero, “Distributed principal
component analysis on networks via directed graphical mod-
els,” in in Proc. of IEEE Intl. Conf. on Acoust., Speech and
Sig. Proc, March 2012, pp. 2877 –2880.

[10] L. Li, A. Scaglione, and J. H. Manton, “Distributed princi-
pal subspace estimation in wireless sensors networks,” IEEE
Journal of Sel. Topics in Sig. Proc., vol. 5, no. 4, pp. 725–738,
2011.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, 2nd ed. Belmont, MA:
Athena Scientic, 1999.

[12] D. P. Bertsekas, Nonlinear Programming, Second Edition,
Athena Scientific, 2003.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends R⃝ in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[14] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus
in ad hoc wsns with noisy links- Part I: Distributed estimation
of deterministic signals,” IEEE Trans. on Sig. Processing, vol.
56, no. 1, pp. 350–364, 2008.

[15] S. M. Kay, Fundamental of Statistical Signal Processing: Es-
timation Theory, Prentice Hall, 1993.

5854

