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ABSTRACT

In urban scenarios, target localization may be achieved using a single
sensor via multipath exploitation. The multipath generating mecha-
nisms such as building walls creates virtual radar sensors aiding in
localization. For a wide class of radar-target geometries, special-
ized functions termed multipath preservers are derived to ensure that
multipath is physically observable in the radar returns, and there-
fore these functions assist in evaluating the potential of multipath
exploitation in urban sensing. The single sensor system performance
is studied by deriving the Cramér-Rao and the Bayesian Cramér-Rao
bounds (BCRBs). Given a reflecting geometry, these lower bounds
and multipath preservers allow the radar operator to anticipate blind
spots, place confidence levels on the localization results, and permit
sensor positioning to optimally aid in exploiting multipath for target
localization. It is shown here that Cramér-Rao bounds (CRBs) on
the location parameters improve with additional multipath.

Index Terms— Target localization, Radar, Multipath Exploita-
tion, Bayesian Cramér-Rao, Urban Sensing, Experimental design.

1. INTRODUCTION

When radar signals are reflected from walls in urban scenarios, mul-
tipath radar returns result. Multipath radar returns create virtual
radar sensors, permitting noncoherent target localization with a sin-
gle sensor, as demonstrated theoretically and experimentally in [1].

A single target enclosed in a rectangular urban canyon type ge-
ometry consisting of three walls is assumed. The walls are assumed
to be smooth at the radar operating frequencies, resulting in specular
reflections. For lower wavelengths, wall roughness possibly induces
diffuse multipath returns [2]-[5],[6], and is not the focus of this pa-
per. In the multipath exploitation literature [1],[6]-[10], it is assumed
that multipath returns exist; no such conditions are enforced here.
Rather, our formulation is general and incorporates the concept of
“multipath preservers”, which are functions of the reflecting geome-
try assumed. Using this general framework, the Cramér-Rao bounds
(CRBs) and the Bayesian Cramér-Rao lower bounds (BCRBs) for
the target downrange and the crossrange are obtained.

Using the theory of optimal experimental design [11, 12], and
employing the multipath preservers, the CRBs and BCRBs allow the
radar operator to anticipate blind spots, permit sensor or target posi-
tioning, improve interpretability of the radar returns, and place con-
fidence levels on single sensor localization employing multipath ex-
ploitation. Note that our focus is not on improving the estimation of
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the multipath or the direct path time delays, and nor on deriving per-
formance bounds on the time delay estimation [13] and references
therein. Rather, the focus is on evaluating single sensor localization
performance bounds via multipath exploitation given the actual or
the estimates of the direct and multipath time delays.

Prior Work: Multipath exploitation in radar has been reported
in the recent literature [7]-[10], all of which assume specular mul-
tipath. Statistical radar detection was treated in [7], target tracking
in [8], airborne radar applications in [9], range-Doppler application
in [6], experimental indoor multipath detection in [10], and localiza-
tion, but not with a single sensor in [14]. The CRBs on the loca-
tion parameters using multiple sensors were derived in [14]. Single
sensor target localization was studied in [1], but neither the CRBS
nor the BCRBS were derived. Multipath in synthetic aperture radar
(SAR) was studied in [15]-[17], to deal with SAR multipath ghosts,
and noncoherent localization was not the focus of the analysis.

2. MODEL

For ease of exposition we start with a single reflecting surface such as
the side wall of a building as shown in Fig. 1(a), in two dimensions,
with origin “O”, target denoted as (7"), radar (R), and the virtual
radar created due to the multipath w.r.t wall-1 and denoted as (V R1)
as shown in this figure. The radar and target are located at X, =
[—xr, yr]T and x¢ = [—xx, yt]T. There are three paths, shown in
Fig. 1(a), which result in time delays as follows,

T3 = M (1)

J— 17
P Y ST

T1

where ¢ denotes the speed of light in freespace, and x; := [z.; yT]T.
The time delays, 72 and 73 with 71 < 73 < 79, are referred to as
the II-order and I-order multipath, respectively. The first order (I-
order) multipath incorporates one, while the second-order (II-order)
multipath incorporates two reflections at wall-1. Rewriting (1) as

(xr — x,)° + (ye — ) = P /4 (2a)
(e +20) 4+ (ye —yr)* =15 /4 (2b)
2?? (y: — yr)2

212 /4 * (272 —4a2)/4 ! (2¢)
it is seen that (2a) and (2b) are the equations of circles, whereas
(2c¢) is the equation of an ellipse which has its foci at the radar, x,
and the virtual radar at x%, consistent with a bistatic radar configu-
ration. The intersection point of (2a),(2b),(2c) is the target location
X¢, the other intersection is behind the radar and is ignored. When
the measured time delays 7,7 = 1,2, 3 are substituted in (2), the

ICASSP 2013



Dy
B XB

Wall-2

Wall-3

'\:> A XA

0(0,0)

(a) (b)

Fig. 1: Radar Scene: (a) Single wall, (b) Urban canyon

target may be noncoherently localized, provided the multipath and
direct path time delays are detectable and resolvable in the range
profile [1]. The multipath therefore creates virfual monostatic and
virtual bistatic receivers aiding localization with a single real mono-
static sensor. Now consider Fig. 1(b), which shows an urban canyon
type geometry with the dimensions as shown. Denote the multipath
time delays generated from wall-2 as 74 and 75 (71 < 75 < 74), and
wall-3 as 76 and 77 (11 < 77 < 7¢), given by

7'4:2fo—xt||/c77'5:7'1/2+7'4/2 3)
7'6:2Hx§—xt||/c,7'7:7'1/2+7'6/2 4)
for virtual radars at positions x2 := [—r, 2D2+2Dy+yr]T,x§ =

[—(2D1 — z1),y-]7, created by wall-2,3, respectively. The param-
eter D, is defined as standoff distance.

2.1. Multipath Preservers

Using geometric arguments we derive functions that indicate when
multipath is present in the radar returns. In general these func-
tions predict spatial zones where rich multipath may be present, and
which could be ‘mined’ for potential multipath exploitation. For
sensor positioning, these functions may be used in a straightforward
manner to place spatial constraints on the number of feasible sen-
sor positions, with the objective of maximizing the multipath ex-
ploited system performance. Further, these functions could also be
used a posteriori in placing some confidence on the target location
estimates. The formulation in (1) and (3) assumes that multipath
returns are always present for each wall and was an implicit as-
sumption in [1]-[14],[15]-[17]. This is in general not true. To un-
derstand why, consider point A in Fig. 1(a), having coordinates
= [0, yA] , Yya(Xe,Xg) 1= % functions of the radar
and target coordinates. Clearly, for multlpath to exist for this wall,
we must have that Dy + y, < ya < D2 + Dy + y,. We can now
formulate a multipath preserving function, denoted as f1(ya),

Ji(ya) = 1[Dy +yr < ya < D2+ Dy +y4], 6)

where 1[-] is the indicator function. In essence, (5) implies that if
point A is not on its respective wall, then no multipath is observed,
which implies 73 = 7 = 0. In the same spirit, we may derive the
multipath preserving functions for the other two walls in Fig.1(b) as

fo(ze) =10 < zp < D1, (6)
fS(yC)::ﬂ-[Dy+yr<yC<D2+Dy+yr], (7)

2y (Da+Dy+yr—yt)+a¢ (D2 +Dy>
2D2+2Dy+yr—yt

. The coordinates of points

with coordinates zp(Xr,Xt) =

o YtTr—ytDi+yrze—yr D1
o (e, xe) = WEemuDLtIy:

B and C in Fig. 1(b) are then expressed as, xg = [—zp, D2 +
Dy + y-]T and xc = [— D1, yc|” respectively. The coordinates of
the points, A, B, C' are functions of both x¢ and xy.

3. CRAMER-RAO AND BAYESIAN CRAMER-RAO
BOUNDS

In practice, the time delays, 7,, p = 1,...7 are obtained from cor-
relating the transmitted signal with the received radar returns, see
for example [1]. It is therefore reasonable to assume that the mea-
sured time delays, denoted as ¢, are perturbed versions of their true
counterparts. The perturbations v, are assumed to be zero mean,
normally distributed and mutually uncorrelated random variables of
variance 02. Thus, the p-th time delay measurement, ¢, is:

CP:f(p)XTP—’_UPv p:]-vza"'77 (8)

where f(1) = 1, f(2) = f(3) = fi(ya), f(4) = F(5) = fa(xn),
and f(6) = f(7) = fs(yc). The assumption of normality imposed
on the v, ensure analytical tractability of the CRBs. If the 7, are well
separated in the 7 domain, which is the case for large bandwidth,
then the v, may be modeled as uncorrelated; this is our assumption.

3.1. Cramér-Rao bounds

The Cramér-Rao bound for target localization is given by the inverse
of the FIM for target location x. We break the complete FIM down
into its various components, i.e. first, we examine the FIM consid-
ering only the multipath and direct path w.r.t to each wall indepen-
dently. Let F', (x¢) denote the FIM considering only wall k = 1,2,3
assuming x¢ := [2¢,y¢]”, i.e. suppressing the negative sign of x; in
x¢. Using (8) and for the time being assuming that the corresponding
multipath preservers are unity,

1 on (o \7T oty o\ 7T

F =L (o GO k) (GroZZk) o

k(xe) cr? Bx% (8x%) +( kan% k®6 t ©
where,‘®’ denotes the Hadamard product, 7¢ := [T2k, T2k+1], k =

_ |1/ook 1/ooky1| or . (B‘rk)T (aq-
1,2, 3. Furthur G, := [1/0% Voaps | oxt = o ,
T
2x2 911 .__ | 911 Ot 2x1 91y ._ | 819 OTok

e w2 Zop o= 52 G| e, Gk o [ 3 €

R1*2. The partial derivatives in (9) are obtained from (1) and (3).
The FIM, F(x¢) can now be constructed and is not shown here.
It is noted nonetheless, that if any one of the multipath preservers
in (5),(6) or (7) is zero, then those corresponding FIMs are rank
deficient and hence singular at the corresponding target locations.

The complete FIM incorporating all the multipath time delays
and the direct path is given by

_ 1 87’1 87‘1 T 3 8Tk 8‘rk T
P = e (3e) 3 (@0 5) (@0 55)

From the above equation, it is seen that richer resolvable multipath
mechanisms improve the CRBs by adding more statistical informa-
tion to the FIM. The same conclusion can be made if we were to
include higher order multipath from multiple reflections, provided
of course they are detectable. We now incorporate the multipath pre-
servers formally into our FIM definitions. Define the regions, X =
{(=2,9)[0<2<D1,Dy+yr <y< D2+ Dy+yrtand N =
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{(—z,y) € R|fr(gr(z,y)) = 1},k = 1,2,3, such that R, C R,
and g1(z,y) = ya(xr, (z,9)), 92(z,y) := 25(xxr, (z,y)), and
93(z,y) := yo(Xr, (x,y)). In other words, X consists of the entire
region inside the urban canyon, and N, are the regions inside the ur-
ban canyon where the corresponding multipath preservers are unity.
The FIMs can now be redefined as Fi := Fi(x¢)1[x¢ € Ni] and

F:=F(x¢)l[x¢ € U Ry]. Itis noted that F'y, are evaluated at only

those target locatlons Wthh yield unit values for their correspond-
ing multipath preservers. For all other locations F, are rank-1 and
hence singular, which implies that unbiased estimation of the target
is not possible.

3.2. Bayesian Cramér-Rao Bounds

Assume that prior surveillance has made available the information
that the target is located in a certain region inside the urban canyon
in Fig. 1(b). In such situations BCRBs [18] are useful in analyzing
the system performance.

Assume for simplicity that the the target is uniformly distributed
in (—%maz, Ymaz) X (—Tmin, Ymin) inside the canyon. The joint
probability density function of x; and y: is then, p(z¢,y:) =
1[(zt,y) E(@Fmaz Ymaz) X (Tmin Ymin )]

(Zmaz —Tmin) (Umaz —Ymin
time delay vector, ¢ = [C1,...,¢7]7, and p(¢, x4, y¢) as the joint
pdf of ¢, z+, and y:. Then the Bayesian information matrix (BIM)
which considers multipath from all the walls is

B dnp(¢|(ze,ye)) (Onp(Cl(ze, ye)\ T
BE{]E{— oxd ( oxd )}} (10)

+E dlnp(a:z,yt) (81n]f(a:t,yt))T
dxt dx%

=E{F(zt,y¢)} +0 =

Tt=Tmin Yt=Ymin

Let us define the measured

Tmaz,Ymax

F(x¢,yt) doe dys.

The zero matrix in (10) arises as the joint pdf p(z:,y:) is a non-
informative prior. For other prior distributions assumed, the second
term will be nonzero. The BIM considering the direct path and the
multipath from the k-th wall is then given by,

Tmaz Ymazx

Bk = Fk(mt,yt)dmt dyt, k‘ = 1,2,3. (11)

Tt=Tmin Yt=Ymin

Like the classical CRBs, the BCRBs are present on the diagonals of

the inverted BIMs. Unlike the FIMs, the BIMs are not a function of

the target position vector, X¢; tbut rather of the radar location x,.
Some of the double integrals for computing the BIMs are in-

tractable and expressed as integrals of elliptic integrals [19]. For

example, consider the element in the first row, first column of matrix

By, k = 1,2,3. It is readily shown that the following term is re-

TmazsYmazx 2

x,,.fxg da¢ dye

quired to obtain the BIMs: I, = Thee ST =el
Tt=Tmin Yt=Ymin
The inner integral w.r.t x; above can be evaluated using the incom-
plete elliptic integral of the first and the second kind [19], F'(-, -) and
E(-,-) respetively, and is not shown here due to space constraints.
There exist many such terms which are evaluated as integrals of
F(-,-) and E(-,-). Numerical integration is employed in evaluat-
ing the BIMs since the incomplete elliptic integrals are themselves
evaluated numerically, see [19] and references therein.

4. TARGET OR SENSOR POSITIONING USING
STATISTICAL EXPERIMENTAL DESIGN

The FIMs and BIMs not only provide us with theoretical bounds on
localization error variance, but they may also be of use in designing
radar experiments which seek to maximize the ability to exploit mul-
tipath. That is, radar operators may wish to either determine where
targets are best localized, or where sensors must be placed in order
to best localize. These optimizations may be posed in terms of sta-
tistical experimental design theory [11].

Optimal positions for target localization given fixed radar
position. Consider only a single wall, as in Fig. 1(a), with corre-
sponding FIM F1 (x¢). The radar operator wants to know a priori
where the target is best localized via multipath exploitation. Al-
though in practice this is of course not in our control, but rather
useful to know since estimated locations in the vicinity or at the op-
timal positions could be assigned as high confidence targets. Let us
consider the D-optimal design [11], expressed as

max det Fq(x¢), (12)

Xt

st ya(xe,x¢) < D2+ Dy +yr, —(Dy + yr)

Solving (12) via the Karush-Kuhn-Tucker (KKT) conditions, there
exist multiple optimal solutions for x¢ which must satisty

—ya(Xr, X¢) <

22+ (y¢ — yr)2 — = 0, Aixt+b1 <0 (13)
where A1 = _(D2D+ Dy) or 71:)1 = [_CCT(DQ =+ Dy +
y —Zr

yr), T (Dy + yr)]T. In (13) the first condition is an equation of a
circle, whereas the second is the affine inequality constraint which is
identical to the multipath preserver in (5) but in matrix form. Using
the same approach, i.e. when we optimize Fy(x¢), k = 2, 3 instead,
the corresponding circles are given by

For Fs :
For F'3 :

Dy - Dy — yr')2 - (D2 + Dy)2 =0

(D1 —z,)° = 0. (14)

(x4 4+ 2)° + (y¢ —
(e + D1)? + (ye —yr)” —

The optimal target locations w.r.t. these walls must satisfy their cor-
responding circles in (14) and multipath preservers in (6), respec-
tively. These optimal circles comprising the optimal target locations
follow a simple pattern: from the radar at x, draw three lines, one
to each wall, or its imaginary extension, which intersects it at a 90
degree angle. Then, the points of intersections with the walls or their
extensions are the respective centers of the circles, and the distance
of the centers from the radar location are the respective radii. It is
further stressed that these optimal circles in (13) and (14) are not
to be confused with the iso-range contours or (constant range) loci
traced by the target, as in (2).

The optimal target location w.r.t the full FIM (i.e. all walls to-
gether), is expressed as:

max det F(x¢), (15)
Xt
st ya(xe,x¢) < D2+ Dy + yr, —ya(Xe,%¢) < —(Dy +yr)
x5 (Xr,xt) < D1, —zB(Xr,x¢) <0
Yo (%, %) < D2+ Dy +yr, —yo(Xr,%¢) < —(Dy + yr).

A closed form solution as in (13),(14) is intractable for (15) and is
shown numerically in the simulations.

Optimal radar position for Bayesian target localization. Now
consider positioning the sensor, when one has some form of a priori
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Fig. 2: Target Positioning:-walls (in white), For: (a) w1, (b) w2, (¢) w3, (d)
all, Radar (). Deep nulls in (a,c) result because the corresponding multipath
preservers are 0. Part of the optimal circles (solid black) as in (13),(14) are
also shown.

knowledge of the target location. We start again by designing the
best sensor position in the presence of one of the three walls at a
time, i.e. we express this as three separate optimization problems:

maxdet Bg(x:),k=1,2,3

Xr

st Xr & N, and X, € Pp(xs) (16)

where, R, := supp p(x¢, y¢) and

Dy (x¢) := {x|Dy + yr <ya(x,x¢) < D2+ Dy +yr, x¢t € Xp}
Do(x¢) := {x|0 < zp(x,%x¢) < D1, x¢t € Np}
D3(xt) := {X|Dy + yr < yo(x,%t) < D2+ Dy + yr, x¢ € Rp}.

The first constraint in (16) states that the radar position cannot be in
the target prior pdf support. The second constraint states that a radar
position is considered feasible if all target positions within the prior
pdf’s support satisfy their respective multipath preservers.

The sensor positioning optimization for the general BIM (all
walls together) is

max det B(x;)

3 amn
st Xy Xy, and X, € U Dy (x¢).

k=1

The first constraint in (17) is identical to that in (16). The second
constraint states that a radar position is considered feasible if it be-
longs to least one of the @, k = 1,2, 3, as defined in (16). A closed
form solution to both (16) and (17) is not possible, and the optimiza-
tion will be performed numerically in the simulations section. It is
noted that (12),(15)-(17) may be performed performed offline, i.e.
during the sensor deployment phase.

5. SIMULATIONS

The standoff distance, D, = 3m is and noise variance crf, =0’ p=
1,...,7. Consider Fig. 2, which shows the determinant of the FIMs
when the radar is assumed to be at position x, = [—5,2]7. The tar-
get position is varied in downrange and crossrange inside the urban
canyon whose dimensions are D1 = Dy = 20m. In these figures
the determinant of the FIMs are first normalized by their maximum
value and depicted in the dB scale. In Fig. 2(a) we consider the
direct path and the multipath from the the first wall (w1) only, and

det(8,) det(B,)
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Fig. 3: Sensor Positioning (BIM):-walls (in white), For: (a) wl, (b) w2, (c)
w3, (d) all, Target prior ((J). Deep nulls in (a,c) result because the corre-
sponding multipath preservers are 0.

det(F,) is shown for varying target positions. The determinants of
the FIMs w.r.t to the wall 2,3 are shown in Fig. 2(b-c). The de-
terminant of the FIM when all the walls are considered is shown in
Fig. 2(d). When considering walls 1, 2, or 3 individually, there exist
several optimal target locations which maximize the determinant of
their corresponding FIMs. As derived in (13) and (14), the optimal
locations lie on circles which are also shown in Fig. 2(a-c). The
corresponding circles are also shown in Fig. 2(d). Interestingly, it
is seen that the optimal locations lie above the intersection of these
circles, and are closer to wall-3 and wall-1. A final important phe-
nomenon is seen from Fig. 2(b): a deep notch all along the radar’s
crossrange position is observed. This is the shadow region, i.e. a
region where, if a target was present, nothing behind it would be
seen by the radar. Interestingly, the design criteria chooses this as a
multipath blind zone even though the multipath preserver formula-
tion for the back wall does not take into account whether the point
of reflection is in the shadow region; the experimental design does.
The application of sensor positioning via experimental design
is demonstrated next. In Fig. 3(a-c), the determinant of the BIMs
are shown when walls 1, 2, and 3 are considered independently, and
in Fig. 3(d) when they are considered together. In these figures,
the target prior pdf is uniformly distributed over the square with
(Tmaz, Tmin) = (6,4) and (Ymac, Ymin) = (16,14), as shown
by [J. The shadow region notches are now clearly seen in Fig. 3(a-
c). If the sensor is placed at these notches, then those corresponding
multipath delays will not exist and cannot be used for subsequent ex-
ploitation. As noted from the prior simulation, these shadow region
notches are placed automatically by the experimental design crite-
ria and not by the multipath preservers. We see from Fig. 3(d), that
some of the optimal sensor positions are inside the canyon, and close
to the target prior region. It is noteworthy that these optimal sensor
positions are not on the boresight(s) of the target prior region. For
covertness, it is clear from Fig. 3(d) that the optimal sensor positions
outside the canyon, and away from the target prior will be preferred.

6. SUMMARY

Bayesian as well as the classical Cramér-Rao lower bounds for the
single sensor localization employing multipath exploitation were de-
rived. A single target in a rectangular urban canyon and comprised
of three walls was assumed. It was shown that each contributing
multipath source, namely the walls, increases the Fisher information
therefore improving the CRBs and BCRBs.
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