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ABSTRACT

This work presents a statistical analysis of a beamformer-assisted

acoustic echo canceler (AEC). A new formulation leads to analyti-

cal models that can also be used to predict the transient performance

of adaptive wideband beamformers. Monte Carlo simulations illus-

trate the accuracy of the model, which is then used to provide de-

sign guidelines. Application of the new model confirms previous

experimental findings that the same cancellation performance of a

single-microphone AEC can be achieved with a shorter AEC when

the possibility of spatial filtering is available.

Index Terms— Statistical analysis, beamformer-assisted acous-

tic echo cancellation, constrained least-mean square algorithm

1. INTRODUCTION

Acoustic echoes arise when a microphone picks up the signal radi-

ated by a loudspeaker and its reflections at the borders of a reverber-

ant environment. Without a handset to provide attenuation between

loudspeaker and microphone, intelligibility and listening comfort

degrade [1, 2]. Typical room reverberation times lead to the need

for adaptive acoustic echo cancelers with very long responses [1, 2].

Fast convergence and satisfactory echo cancellation are hard to ob-

tain under these conditions [1, 3–5].

The desired speech signal is usually corrupted by speech from

other talkers, noise and echoes in an acoustic environment. Spa-

tial filtering (beamforming) can help attenuate interfering signals in

directions other than the direction of arrival (DOA) of the desired

speaker. Beamformers (BF) have limited echo suppression capacity

due to limits in the array directivity [6] and the large number of mi-

crophones necessary to suppress all reflections outside the desired

DOA [7].

Acoustic echo cancellation solutions in which BFs and acoustic

echo cancelers (AECs) have complementary functions have raised a

lot of interest recently [8–13]. BFs and AECs contribute by different

means to reduce the residual echo. Hence, using both techniques in

a synergistic way can improve the acoustic echo cancellation perfor-

mance. BFs an AECs are usually combined by means of two basic

structures [8, 14]. The AEC first structure (AEC-BF) employs one

AEC per microphone [15–17]. The BF then processes the AEC out-

puts for spatial filtering. It requires several long AECs, leading to

very high computational costs [15]. Moreover, signals not in the de-

sired DOA must be treated as double talk, complicating the design.
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The BF first (BF-AEC) structure does the spatial filtering first, leav-

ing basically the echo in the desired DOA to be cancelled by a single

AEC.

Despite the possibilities of combined BF and AEC acoustic echo

cancellation systems, we find only few analyses of their transient

behavior in the literature. The AEC-BF structure has been studied

in [15–17]. A stochastic model has been derived using the power

transfer function method for the case of a fixed BF, where just the

AEC is adapted. The performance of a system where BF and AEC

are jointly adapted has not yet been studied in detail. Only a pre-

liminary mean analysis of the jointly optimized BF-AEC has been

presented in [18], with the joint-optimization treated as a combina-

tion of a constrained and an unconstrained optimization problem.

This work studies the transient behavior of the jointly optimized

BF-AEC structure [9, 11, 13, 18]. We formulate the joint optimiza-

tion as a single constrained optimization problem, what simplifies

the statistical analysis. The analysis yields analytical models for the

first and second moment behaviors of the BF and AEC weights, as

well as for the mean power of the residual echo. Monte Carlo sim-

ulations illustrate the accuracy of the models. We also indicate how

the derived models can be used for design.

In this paper, plain lowercase or uppercase letters denote scalars,

lowercase boldface letters denote column vectors and uppercase

boldface letters denote matrices.

2. PROBLEM STATEMENT

Fig. 1 shows the BF-AEC structure, with M echo impulse response

vectors hm of length Nh, M microphone signals xm[n], one adap-

tive wideband beamformer composed of M filters bm[n] of length

NBF and an adaptive AEC filter ĥ[n] of length NAEC. We assume

responses hm constant for mathematical tractability. It has been

conjectured that the spatial filtering may reduce the required AEC

length, as compared to the classical FIR AEC structure [19]. Hence,

our analysis admits NAEC ≤ Nh.

2.1. Signal Model

The mth microphone signal xm[n] is the sum of a near-end signal

rm[n] and an echo em[n]:

xm[n] = em[n] + rm[n]. (1)

Each signal rm[n] is composed of local speech, local interferences

and random noise. The echo em[n] results from the filtering of u[n]
by hm. We define the microphone array snapshot xs[n] at time n as

xs[n] =
[

x0[n] x1[n] · · · xM−1[n]
]T

. (2)
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Fig. 1. BF-AEC system configuration [18].

and the combined beamformer input regressor as [20]

xb[n] =
[

x
T
s [n]x

T
s [n− 1] · · · xT

s [n− (NBF − 1)]
]T

. (3)

Defining the vector bsℓ [n] of the ℓth components of all vectors

bm[n], m = 0, . . . ,M − 1 at time n as

bsℓ [n] =
[

b0ℓ [n] b1ℓ [n] · · · bM−1ℓ [n]
]T

, ℓ = 0, . . . , NBF − 1

we write the beamformer output y[n] as

y[n] =

NBF−1
∑

ℓ=0

x
T
s [n− ℓ]bsℓ [n]. (4)

Now, defining the stacked beamformer weight vector

b[n] =
[

b
T
s0
[n] b

T
s1
[n] · · · b

T
sNBF−1

[n]
]T

(5)

and using (3), we write y[n] as the linear filtering

y[n] = b
T [n]xb[n].

Next, defining the AEC response vector

ĥ[n] =
[

ĥ0[n] ĥ1[n] · · · ĥNAEC−1[n]
]T

(6)

and the AEC input vector uĥ[n] = [u[n] · · ·u[n− (NAEC − 1)]]T

yields ŷ[n] = ĥ
T
[n]uĥ[n]. The residual echo is d[n] = y[n]− ŷ[n].

Finally, defining the combined input vector

s[n] =
[

−uĥ
T [n] xb

T [n]
]T

(7)

and, from (5) and (6), the combined adaptive coefficient vector

w[n] =
[

ĥ
T
[n] b

T [n]
]T

(8)

we write the residual echo d[n] as the inner product

d[n] = −u
T

ĥ [n]ĥ[n] + x
T
b [n]b[n] = s

T [n]w[n]. (9)

2.2. Performance Surface

The mean output power (MOP) performance surface J is defined as

the mean value of d2[n] conditioned on w[n] = w. From (9),

J = E{d2[n]|w[n] = w} = E
{

w
T
s[n]sT [n]w

}

= w
T
Rssw. (10)

where Rss = E{s[n]sT [n]} is the input autocorrelation matrix. A

set of NF linear constraints on the beamformer coefficients imple-

ments the spatial filtering. Usually, a constraint matrix C and a vec-

tor F jointly define the desired frequency response information in

the specified DOA [20, 21].

To formulate the linear constraints as a function of the combined

coefficient vector, we define the extended constrained matrix [11]

Ce =
[

0NF×NAEC
C

T
]T

.

Finally, the joint optimization problem can be formulated as

wopt = argmin
w

w
T
Rssw (11a)

subject to C
T
e w = F (11b)

Note that (11) has the same form as the LCMV problem studied

in [20]. From the results in [20],

wopt = R
−1
ss Ce

(

C
T
e R

−1
ss Ce

)−1

F . (12)

Using (12) in (10) yields the minimum MOP

Jmin = w
T
optRsswopt = FT

(

C
T
e R

−1
ss Ce

)−1

F . (13)

2.2.1. Feasible space

Decomposing a feasible w satisfying (11b) into one component in

the column space of Ce, and other in its orthogonal complementary

space [20], and defining Nw = NAEC +M ×NBF yields

w = (INw −Ce(C
T
e Ce)

−1
C

T
e )w + (Ce(C

T
e Ce)

−1
C

T
e )w

= P ew + f e (14)

where P e is the Nw × Nw projection matrix onto the orthogonal

complementary space of the columns of Ce, and is given by

P e = (INw −Ce(C
T
e Ce)

−1
C

T
e ) (15)

=

[

INAEC
0NAEC×M.NBF

0M.NBF×NAEC
P

]

where P = IM.NBF
−C(CTC)−1CT is the projection matrix onto

the orthogonal complementary space of the columns of C [20], and

f e = Ce(C
T
e Ce)

−1F = [01×NAEC
f

T ]T (16)

is the extended quiescent part of the solution with

f = C(CTC)−1F [22]. We used CT
e w = F for all feasible w

in (14).
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3. ADAPTIVE SOLUTION

We now study the behavior of the BF-AEC with coefficients jointly

adapted using the constrained LMS algorithm proposed in [20]. Us-

ing the stochastic gradient approach in [20, 23] yields the weight

update equation

w[n+ 1] = P e(w[n]− µs[n]d[n]) + f e (17)

Exploiting the properties of P e, we split the update equation into

two simpler update equations:

ĥ[n+ 1] = ĥ[n] + µd[n]uĥ[n]

b[n+ 1] = P (b[n]− µd[n]xb[n]) + f .
(18)

This significantly reduces the computational complexity, as P is of

much lower dimension than P e.

4. STATISTICAL ANALYSIS

4.1. Simplifying Assumptions

We now study the behavior of BF-assisted echo canceler using (18)

under the following typical simplifying assumptions:

A1 s[n] is stationary, zero-mean and Gaussian;

A2 u[n] and r[n] are statistically independent;

A3 Rss is positive-definite, and C has full column rank;

A4 Statistical dependence of s[n]sT [n] and w[n] can be neglected;

A5 The desired DOA does not change during adaptation.

Though not always valid in practice, these assumptions make anal-

ysis viable and frequently lead to results that retain sufficient in-

formation to serve as reliable design guidelines [5, pg 315][9, 11].

Simulation results will confirm their reasonability for this analysis.

4.2. Mean Weight Behavior

Define the weight error vector

v[n] = w[n]−wopt. (19)

Considering the equivalent forms of (11) and the LCMV problem

studied in [20], and assuming the algorithm is initialized at a feasible

solution, the mean behavior of v[n] can be obtained from [20] as

E{v[n+ 1]} = (INw − µP eRssP e)E{v[n]} (20)

= (INw − µP eRssP e)
n+1

E{v[0]}. (21)

where it has been verified from (12) and (15) that

P eRsswopt = 0Nw (22)

4.3. Weight Error Correlation Matrix

Again due to the equivalent forms of (11) and the LCMV problem,

we could use the results in [23] for the behavior of the weight co-

variance matrix Kww[n]. However, the recursive expression derived

in [23] for Kww[n] depends explicitly on E{w[n]}, and is not ade-

quate for obtaining design guidelines. We derive here a more useful

model using the weight error vector v[n].
Using (19) in (17), d0[n] = sT [n]wopt, and P 2

e = P e yields

v[n+1] = (INw −µP es[n]s
T [n]P T

e )v[n]−µP es[n]d0[n] (23)

where

v[n] = P ev[n], (24)

Using A1-A5 and (22), calculation as in [4] leads to

Rvv[n+ 1] = Rvv[n]− µ
{

Rvv[n]Rproj +RprojRvv[n]
}

+ µ
2
{

2RprojRvv[n] + tr (RprojRvv[n]) + Jmin

}

Rproj (25)

where Rproj = P eRssP e, Rvv[n] = P eRvv[n] = Rvv[n]P e.

As P e is singular, one cannot analyze (25) in the principal

coordinate space of P eRssP e as in [4]. Using A3 we can show

that R(P eRssP e) = R(P e) where R(·) denotes the range of

a matrix [24, pg. 102]. Also, w[n] from (17) will be feasi-

ble for all n if initialized in the feasible region [20]. From (24),

v[n] ∈ R(P eRssP e). Then, Rvv[n] ∈ R(P eRssP e). Hence, up-

dates of (25) occur only within R(P e), and its convergence can be

studied in this reduced dimension. Using the properties of projection

matrices, the eigenvalues of P eRssP e are given by

λ̃ss =
[

λ
T
ss 01×NF

]T

(26)

where λss contains the Nw−NF eigenvalues corresponding to eigen-

vectors in the non-constrained space and the remaining NF eigen-

values are zero. We then perform the orthogonalization procedure

in [4] using only the eigenvectors associated with λss. The diagonal

entries of Rvv[n] in the principal coordinate space of P eRssP e can

be grouped in the vector ρvv, which then obeys

ρvv[n+ 1] =Φρvv[n] + µ
2
Jminλss (27)

where Φ = diag(ρ1, ρ2, . . . , ρNw−NF
) + µ2λssλ

T
ss and ρk = (1−

µλsk )
2 + µ2λ2

sk
. Matrix Φ is symmetric and positive definite, and

convergence of ρvv[n] is sufficient for the convergence of Rvv[n] [4].

Assuming convergence, the solution to (27) is [4, 25]

ρvv[n] =Φ
n
ρvv[0] + µ

2
Jmin

n−1
∑

j=0

Φ
j
λss (28)

4.4. Stability

Convergence of (28) is determined exclusively by the eigenvalues

λΦ of Φ [25], which are real and positive. Using Gershgorin the-

orem [26] we can show that a sufficient condition for all λΦ < 1
is

µ <
2

3 tr(P eRssP e)
. (29)

This stability limit is less restrictive than that derived in [20]. It has

also the practical advantage that the trace of P eRssP e is, by defi-

nition, the total average power of P es[n], which can be estimated

from the available signals.

4.5. Mean Output Power (MOP)

Using A4, (13), (19), (22) and (24) we can rewrite the MOP as

E{d2[n]} = E{wT [n]s[n]sT [n]w[n]}

= tr(Rvv[n]Rss) + Jmin

= tr(Rvv[n]P eRssP e) + Jmin

= ρ
T
vv[n]λss + Jmin (30)

In the last line of (30) we performed the orthogonal decomposition

of P eRssP e using the eigenvalue structure (26).
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4.6. Steady State

When (29) holds, (27) will converge such that limn→∞ ρvv[n+1] =
ρvv[n] = ρvv[∞]. Doing as in [5, pg. 326–327] yields

J [∞] = Jmin



1 +

1

2

∑Nw−NF

i=1

µλsi

1−µλsi

1− 1

2

∑Nw−NF

i=1

µλsi

1−µλsi



 (31)

where λsi is the ith eigenvalue in λss. For µmax{λsi} ≪ 1, 1 −
µλsi ≈ 1 for all i and (31) reduces to

J [∞] ≈ Jmin

[

1 +
1

2
µ tr(P eRssP e)

1− 1

2
µ tr(P eRssP e)

]

. (32)

Further assuming µ tr(P eRssP e) ≪ 2 yields a simpler estimator for

the steady state excess output power, as

J [∞] ≈ Jmin

[

1 +
µ

2
tr(P eRssP e)

]

(33)

5. RESULTS

5.1. Model Validation

In the following we denote the critical step size in (29) as µcrit. We

show simulation results for two unit power first order autorregres-

sive (AR) input signals with different correlation coefficients. We

considered 2 microphones. h0 and h1 had 128 taps each, generated

according to the exponential model in [1]. The desired DOA was as-

sumed orthogonal to the microphone array. The microphone signals

were corrupted by a zero-mean Gaussian white noise with variance

10−2. The adaptive BF was designed with NBF = 16, linear phase,

and all-pass frequency response with NF = 16. The AEC used

NAEC = 128. Fig. 2 shows the predicted (continuous red) and sim-

ulated (continuous blue) transient MOP. The predicted steady-state

MOP is shown by the red dotted lines. Simulations and theoretical

predictions show excellent agreement. Note that µ = µcrit keeps the

algorithm stable, and is clearly close the real stability limit for highly

correlated signals (Fig. 2(a)).

5.2. Performance Curves

Figs. 3(a) and 3(b) illustrate the use of the derived models for design.

They show E{d2[∞]} obtained for echo responses with 1024 coeffi-

cients, an AR(1) far-end signal with a1 = −0.9 and unit power, and

white Gaussian noise with variance 10−2. Fig. 3(a) is for NAEC =
1024, and shows using (32) how much performance gain is expected

as we increase the number of microphones. Fig. 3(b) shows the

influence of the AEC length for µ = 0.05µcrit for different num-

bers M of microphones. It shows that echo cancellation can be

improved with NAEC < Nh by increasing M . These results con-

firm the findings in [19] that the same cancellation performance of a

single-microphone AEC can be achieved with a shorter AEC when

the possibility of spatial filtering is available.

6. CONCLUSIONS

This work presented a new analysis of a beamformer-assisted acous-

tic echo canceler using the constrained least-mean square algorithm.

The analysis considered joint adaptation of both the beamformer and

the echo canceler. A new formulation of the problem was introduced,

which led to analytical models that can be used to predict also the

transient behavior of adaptive wideband linear constraint minimum
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Fig. 2. Proposed model and Monte-Carlo simulation results based on

300 runs for different far-end signal statistics (M = 2, Nh = 128,
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variance beamformers. Simulation results illustrated the accuracy of

the new model. It was shown how the model can be employed to

construct useful design guidelines.

7. RELATION TO PRIOR WORK

Thanks to a new formulation, the results of this work can be used to

predict the behaviors of both the adaptive LCMV broadband BF and

the jointly optimized BF-assisted AEC [11]. The only existing BF

second moment analysis is for the minimum variance distortionless

response (MVDR) beamformer, and has been done under narrow-

band signal assumptions [23]. The results in [23] can be adapted to

the broadband case without loss of generality, but its expressions are

not amenable for design. Analyses of BF-assisted AECs are even

rarer. The AEC-BF structure has been studied in [15], but for a

fixed BF, where just the AEC is adapted. No previous result pro-

vides design informations as to how the different parameters can be

combined to achieve a given performance.
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