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ABSTRACT
The phase unwrapping, which is a problem to reconstruct the con-
tinuous phase function of an unknown complex function from its
finite observed samples, has been a key for estimating useful phys-
ical quantity in many signal and image processing applications. In
the light of the functional data analysis, it is natural to estimate first
the unknown complex function by a certain piecewise complex poly-
nomial and then to compute the exact unwrapped phase of the piece-
wise complex polynomial with the algebraic phase unwrapping al-
gorithms. In this paper, we propose several useful extensions and
numerical stabilization of the algebraic phase unwrapping along the
real axis. The proposed extensions include (i) removal of a certain
critical assumption premised in the original algebraic phase unwrap-
ping, and (ii) algebraic phase unwrapping for a pair of bivariate poly-
nomials. Moreover, in order to resolve certain numerical instabilities
caused by the coefficient growth in an inductive step in the original
algorithm, we propose to compute directly a certain subresultant se-
quence without passing through the inductive step.

Index Terms— Algebraic phase unwrapping, Functional data
analysis, Two-dimensional phase unwrapping, Path independence
condition, Numerical stabilization

1. INTRODUCTION

In many signal and image processing problems, the phase unwrap-
ping has been a key for estimating some physical quantity [1, 2], for
example, surface topography in synthetic aperture radar (SAR) (and
synthetic aperture sonar (SAS)) interferometry [3, 4, 5, 6, 7], wave-
front distortion in adaptive optics [8, 9, 10], the degree of magnetic
field inhomogeneity in the water/fat separation problem of magnetic
resonance imaging (MRI) [11, 12, 13], the relationship between the
object phase and the bispectrum phase in astronomical imaging [14,
15] and the accurate profiling of mechanical parts by x-ray [16, 17].
Recently the phase unwrapping has been applied to a frequency es-
timation problem [18] and a DOA estimation problem [19].

Suppose that(
d(0)(γ(ζk)), d(1)(γ(ζk))

)
=
(
f(0)(γ(ζk))+ε(0)(γ(ζk)), f(1)(γ(ζk))+ε(1)(γ(ζk))

)
∈R2 (1)

(k = 1, 2, . . . , s) are given as a finite sequence of 2-D noisy real
vectors, where f(i) : R2 → R (i = 0, 1) are unknown functions,
ε(i) : R2→ R (i = 0, 1) are additive random noise functions, and
γ : [a, b]→ R2 is a known piecewise C1 function which defines a
path along the sample points γ(ζk)∈R2 (a≤ζ1<ζ2< · · ·<ζs≤b).

For simplicity, denote by F : [a, b] ∋ t 7→ F(0)(t)+ jF(1)(t) ∈
C a univariate complex valued function defined as

F(i)(t) := f(i)(γ(t)) for all t ∈ [a, b] (i = 0, 1).

The two-dimensional phase unwrapping of (f(0), f(1)) along γ

at (x∗, y∗) :=γ(t∗)∈R2, or the phase unwrapping of F at t∗∈ [a, b]
This work was supported in part by JSPS Grants-in-Aid (B-21300091).

along the real axis, is a problem of estimating the unwrapped phase

θ
[γ]
f (x∗, y∗) :=θF (t

∗) :=θF (a)+

∫ t∗

a

ℑ

{
F ′
(0)(t) + jF ′

(1)(t)

F(0)(t) + jF(1)(t)

}
dt

(2)
by using the data

(
d(0)(γ(ζk)), d(1)(γ(ζk))

)
, where θF (a) ∈

(−π, π] satisfies F (a) = |F (a)|ejθF (a).
Despite the tremendous effort made so far, a technically reli-

able phase unwrapping has not yet been established for its practical
use in wide range of signal and image processing. This is mainly
because θF (t) (a ≤ t ≤ b) is continuously defined along the arc
γ([a, b]) as in (2) while most existing phase unwrapping algorithms,
e.g., path-following methods [4, 20, 21, 22], minimum-norm meth-
ods [23, 24, 25] and network flow methods [26, 27] estimate the
unwrapped phase θF only at ζk (k = 1, 2, . . . , s) without checking
the consistency with θF at t ∈ (ζk, ζk+1).

In this paper, in the spirit of functional data analysis [28, 29, 30,
31, 32, 33], we consider the situation where the functions F(i) :
[a, b] → R (i = 0, 1) have been approximated respectively by
piecewise polynomials (i.e., Spline functions) F̃(i) : [a, b] → R
(i = 0, 1) through some smoothing techniques. In such a case, it is
natural to estimate θF (t

∗) in (2) by

θ
F̃
(t∗) := θ

F̃
(a) +

∫ t∗

a

ℑ

{
F̃ ′
(0)(t) + jF̃ ′

(1)(t)

F̃(0)(t) + jF̃(1)(t)

}
dt. (3)

By dividing the interval [a, b] into finite subintervals, the unwrapped
phase θ

F̃
(t∗) in (3) can be computed [34] by the algebraic phase

unwrapping along the real axis [19, 35] without requiring any nu-
merical root finding or numerical integration technique.

However, in a direct computer implementation of the algorithms
in the algebraic phase unwrapping [19, 36, 37]1 as well as in a direct
implementation of Algorithm 1 (Sturm-R) in Sec. 2.2, we encounter
numerical instabilities, especially for polynomials of relatively large
degree, due to the unavoidable gap between theoretical value and nu-
merical value computed by digital computer using finite digit num-
ber systems. Therefore, thoughtless direct implementation of the
algebraic phase unwrapping algorithms for polynomials of large de-
gree, sometimes results in the failure of the phase unwrapping.

The goal of this paper is to present several extensions and nu-
merical stabilization of the algebraic phase unwrapping along the
real axis [19]. In Sec. 2, we present a new algorithm (Algorithm
1) to define a new Sturm sequence, unlike [19, SGA 2]. Theorem
1 based on Algorithm 1 can deal with a special case A(0)(a) = 0
which is excluded in [19, Theorem 1]. In Sec. 3, we consider the
two-dimensional phase unwrapping and elucidate the condition for

1The algebraic phase unwrapping for complex polynomials along the unit
circle was established first in [36]. As its continuations, the algebraic phase
unwrapping along the real axis [19] and that along the imaginary axis [37]
have been developed.
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the path independence of the two-dimensional phase unwrapping. In
particular, if bivariate polynomial functions f(i) : R2→R (i=0, 1)
satisfy f(x, y) := f(0)(x, y)+ jf(1)(x, y) ̸= 0 for all (x, y) in a
simply connected domain D⊂R2, the two-dimensional unwrapped
phase θf ∈ C2(D) can be computed uniquely with Theorem 1. In
Sec. 4, in order to stabilize the computation of θA(t∗) in Theorem 1,
we propose to replace the inductive computation of the polynomials
Ψk(t) (k=0, 1, . . . , q) in Algorithm 1, followed by their numerical
evaluation at t∗∈ [a, b], with the direct numerical computation of the
subresultant sequence [38, 39] at t∗. For this purpose, we present
relation between the sign of the Sturm sequence and that of the sub-
resultant sequence (Proposition 1). By the proposed replacement,
the sign of the Sturm sequence can be computed without suffering
from the propagation of errors caused by the coefficient growth in
the process of Algorithm 1, and then the algebraic phase unwrapping
is stabilized greatly even for polynomials of relatively large degree.
The extensive numerical experiments exemplify the notable perfor-
mance improvement made by the proposed numerical stabilization.

Relation to Prior Work
The work presented here focuses on the extension and stabilization
of the algebraic phase unwrapping along the real axis [19]. The work
by Yamada and Oguchi [19] does not consider the path independence
of the two-dimensional phase unwrapping, and the original algo-
rithm [19, SGA 2] sometimes causes certain numerical instabilities
in the computer implementation. Therefore in this paper, we eluci-
date the condition for the path independence of the two-dimensional
phase unwrapping, and extend the algebraic phase unwrapping for a
pair of bivariate polynomials. Moreover we stabilize the algebraic
phase unwrapping with the subresultant sequence.

2. ALGEBRAIC PHASE UNWRAPPING FOR
POLYNOMIALS

2.1. Notations

Let N∗, R and C denote respectively the set of all positive integers,
real numbers and complex numbers. We use j ∈ C to denote the
imaginary unit satisfying j2 = −1. For any c ∈ C, ℜ(c) and ℑ(c)
stand respectively for the real and imaginary parts of c. For any
C(t) =

∑m
k=0 ckt

k ∈ C[t] (s.t. cm ̸= 0 and m ≥ 0), we define
deg(C) :=m and lc(C) := cm. For any C(t)=

∑m
k=0 ckt

k ∈C[t],
we use the expression C(t)=C(0)(t)+jC(1)(t), where C(0)(t) :=∑m

k=0 ℜ(ck)t
k ∈ R[t] and C(1)(t) :=

∑m
k=0 ℑ(ck)t

k ∈ R[t]. For
any x∈R, its sign is defined by

sgn(x) :=

{
x/|x| if x ̸= 0,
0 if x = 0,

and arctan denotes the principle value inverse tangent satisfying
tan(arctan(x)) = x and −π

2
< arctan(x) < π

2
.

2.2. Algebraic Phase Unwrapping

The next theorem presents an exact solution of the phase unwrapping
problem for complex polynomials along the real axis. This theorem
is a relaxation of [19, Theorem 1]. Indeed, Theorem 1 can deal with
a special case A(0)(a) = 0 which is excluded in [19, Theorem 1].

Theorem 1 (Algebraic phase unwrapping for a univariate complex
polynomial along the real axis) Let {Ψk(t)}qk=0 be the Sturm se-
quence generated by applying Algorithm 1 (Sturm-R) to A(0)(t) ∈
R[t] and A(1)(t) ∈ R[t] under the assumptions A(t) := A(0)(t) +
jA(1)(t) ̸= 0 (t ∈ [a, b]), A(0)(t) ̸≡ 0 and A(1)(t) ̸≡ 0. Define at

each t∈ [a, b] the number of variations in the sign of {Ψk(t)}qk=0 by

V {Ψ(t)} := V {Ψ0(t),Ψ1(t), . . . ,Ψq(t)}
:=

∣∣{i | 0 ≤ i < q and Ψi(t)Ψi+ϱ(i)(t) < 0}
∣∣ ,

where ϱ(i) := min{k ∈ N∗ | Ψi+k(t) ̸= 0}. Then, for every
t∗ ∈ (a, b], we have

θA(t
∗) = θA(a) +

∫ t∗

a

A′
(1)(t)A(0)(t)−A(1)(t)A

′
(0)(t)

{A(0)(t)}2 + {A(1)(t)}2
dt

= θA(a)−
{

arctan{QA(a)} if A(0)(a) ̸= 0,

sgn(Ψ0(a)Ψ1(a))π/2 if A(0)(a) = 0,

}

+


arctan{QA(t

∗)}+ [V {Ψ(t∗)} − V {Ψ(a)}]π
if A(0)(t

∗) ̸= 0,

π/2 + [V {Ψ(t∗)} − V {Ψ(a)}]π if A(0)(t
∗) = 0,

(4)

whereQA(t):=
A(1)(t)

A(0)(t)
and θA(a)∈(−π,π] s.t.A(a)=|A(a)|ejθA(a).

Algorithm 1 Sturm generating algorithm (Sturm-R)

Input: A(0)(t), A(1)(t) ∈ R[t] and a ∈ R

1:
Ψ0(t)←

A(0)(t)

(t− a)e0
, Ψ1(t)←

A(1)(t)

(t− a)e1
(where ei denotes

the order of t = a as a zero of polynomial A(i)(t) (i = 0, 1))
2: k ← 1
3: while deg(Ψk) ̸= 0 do

4:
Ψk+1(t)← −Ψk−1(t) +Hk(t)Ψk(t)
(where Hk(t) ∈ R[t] and deg(Ψk+1) < deg(Ψk))

5: k ← k + 1
6: end while

7: q ←
{

k if Ψk(t) ̸≡ 0
k − 1 if Ψk(t) ≡ 0

Output: {Ψk(t)}qk=0

Example 1 (Expression of the exact unwrapped phase by Theorem
1) Let us construct the unwrapped phase θA(t) (0 ≤ t ≤ 1) of the
univariate complex polynomial

A(t) := A(0)(t) + jA(1)(t)

= (t4 − 1.11t3 + 0.356t2 − 0.0255t)

+ j(t4 − 2.525t3 + 2.29995t2 − 0.906172t+ 0.131222)

without using any root finding or numerical integration technique.
Applying Algorithm 1 to A(0)(t) and A(1)(t) for a = 0 and

b = 1, we obtain the Sturm sequence {Ψk(t)}5k=0 as

Ψ0(t) = t3 −
111

100
t2 +

89

250
t−

51

2000
,

Ψ1(t) = t4 −
101

40
t3 +

45999

20000
t2 −

226543

250000
t+

65611

500000
,

Ψ2(t) = −t3 +
111

100
t2 −

89

250
t+

51

2000
,

Ψ3(t) = −
3733

10000
t2 +

94233

250000
t−

190279

2000000
,

Ψ4(t) = −
27788829033

260102169185000
t+

15335859

278705780000
,

Ψ5(t) =
3391452647840106395584666460779211811

119967177270575015975354069525774695200000
.

From A(0)(0) = 0 and A(1)(0) = 65611
500000

, we have θA(0) = π/2.
Moreover, from sgn(Ψ0(0)Ψ1(0)) = sgn

(
− 3346161

1000000000

)
= −1
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Fig. 1. Exact unwrapped phase by Theorem 1

and V {Ψ(0)} = V
{
− 51

2000
, 65611
500000

, 51
2000

,− 190279
2000000

, 15335859
278705780000

,
3391452647840106395584666460779211811

119967177270575015975354069525774695200000

}
= 3, the unwrapped

phase θA(t) (0 < t ≤ 1) in (4) is expressed as

θA(t) = π+

{
arctan{QA(t)}+[V {Ψ(t)}−3]π if A(0)(t) ̸= 0,

π/2 + [V {Ψ(t)} − 3]π if A(0)(t) = 0,

which is depicted in Fig. 1.
From Fig. 1, we observe that the unwrapped phase function θA

can vary rapidly even if deg(A) is small, which suggests the inher-
ent difficulty in phase unwrapping problem. Obviously, this notable
feature is hardly detectable by most exiting phase unwrapping algo-
rithms, i.e., [2, 4, 20, 21, 22, 23, 24, 25, 26, 27], essentially based
on discrete approximations. Moreover, we also observe that the nec-
essary number of digits to express the coefficients of {Ψk(t)}qk=0

grows quickly. This phenomenon is called the coefficient growth,
which causes numerical instabilities in the direct computer imple-
mentation of Algorithm 1 (Sturm-R) (see Sec. 4.1).

3. EXTENSION OF THE ALGEBRAIC PHASE
UNWRAPPING ALONG THE REAL AXIS

The two-dimensional unwrapped phase generally depends on the
path of integral.

The next theorem presents a condition which guarantees (i) the
unique existence of the two-dimensional unwrapped phase as a C2

function and (ii) the path independence of the unwrapped phase.

Theorem 2 (Path independence of two-dimensional phase unwrap-
ping) Let D⊂R2 be a simply connected domain. Suppose that f(i) :
R2→ R (i = 0, 1) are C2(D) functions satisfying f(x, y) := f(0)
(x, y)+jf(1)(x, y) ̸=0 for all (x, y)∈D. Then the followings hold.

(a) (Unique existence of two-dimensional unwrapped phase) Sup-
pose that θ0 ∈ (−π, π] satisfying f(x0, y0) = |f(x0, y0)|ejθ0
is given at some (x0, y0) ∈ D, then there exist a unique function
θf ∈ C2(D) satisfying θf (x0, y0) = θ0 and for all (x, y) ∈ D

∂θf
∂x

(x, y) = ℑ

{ ∂f(0)
∂x

(x, y) + j
∂f(1)
∂x

(x, y)

f(0)(x, y) + jf(1)(x, y)

}
∂θf
∂y

(x, y) = ℑ

{ ∂f(0)
∂y

(x, y) + j
∂f(1)
∂y

(x, y)

f(0)(x, y) + jf(1)(x, y)

}
 .

(b) (Path independence of two-dimensional unwrapped phase) Sup-
pose γI : [a, b] → D and γII : [c, d] → D satisfy γI(a) =
γII(c)= (x0, y0)∈D and γI(b)= γII(d)= (x1, y1)∈D. Then
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Fig. 2. Exact two-dimensional unwrapped phase

θf (x1, y1)

= θf (x0, y0) +

∫ b

a
ℑ
{(

f(0)(γ
I(t))

)′
+ j

(
f(1)(γ

I(t))
)′

f(0)(γ
I(t)) + jf(1)(γ

I(t))

}
dt

= θf (x0, y0) +

∫ d

c
ℑ
{(

f(0)(γ
II(τ))

)′
+ j

(
f(1)(γ

II(τ))
)′

f(0)(γ
II(τ)) + jf(1)(γ

II(τ))

}
dτ.

Example 2 Let us construct the unwrapped phase of the bivari-
ate complex polynomial f(x, y) := f(0)(x, y) + jf(1)(x, y) over
[0, 1.3]× [0, 1.3] by using Theorem 1 repeatedly, where

f(0)(x, y) := x4y − 4x4 − 2x3y − 3xy + 10x− 2y3,
f(1)(x, y) := x4y − 4x4 − 2x3y − 3xy + 10x− 2y3 + 1.

Since f(1)(x, y) = f(0)(x, y) + 1 for all (x, y) ∈ R2, we have
f(x, y) ̸= 0 for all (x, y) ∈ R2. For any (x∗, y∗) ∈ [0, 1.3] ×
[0, 1.3], we choose the piecewise C1 path γ(x∗,y∗) as

γ(x∗,y∗)(t) :=

{
(t, 0) if 0 ≤ t ≤ x∗,
(x∗, t− x∗) if x∗ ≤ t ≤ x∗ + y∗.

Figure 2 depicts the unwrapped phase θf (x, y) computed by using
Theorem 1 repeatedly for two subintervals [0, x∗] and [x∗, x∗ + y∗].

4. STABILIZATION OF THE ALGEBRAIC PHASE
UNWRAPPING ALONG THE REAL AXIS

4.1. Numerical Instabilities of Algorithm 1

To implement Algorithm 1 (Sturm-R) precisely, we need large num-
ber of digits to express the rational coefficients of the polynomials
Ψk(t) (e.g., see Example 1). This phenomenon is exactly same as
the coefficient growth well-known in the computation of the poly-
nomial remainder sequence through the Euclidean algorithm [39].
In computer implementation of θA(t) in Eq. (4) through Algorithm
1, the coefficient growth causes the truncation error in the floating-
point expression of the rational coefficients (or memory shortages by
increasing number of digits for exact expression of the rational coef-
ficients). In particular, once a serious information loss (by the addi-
tion or subtraction among numbers of ill-balanced absolute values)
or catastrophic cancellation (by the subtraction number very close
numbers) occurs, the gap between theoretical values and numerical
values of Ψk(t

∗) by digital computer becomes unacceptably large.

4.2. Numerical Stabilization by Subresultant Sequence

For a pair of real polynomials

Ψ0(t) := amtm + am−1t
m−1 + · · ·+ a1t+ a0,

Ψ1(t) := bnt
n + bn−1t

n−1 + · · ·+ b1t+ b0,
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s.t. am ̸= 0 and bn ̸= 0, the i-th subresultant Sresi(Ψ0,Ψ1, t)
(i = 0, 1, . . . ,min{m − 1, n − 1}) of Ψ0(t) and Ψ1(t) is defined
as the determinant of a (m+ n− 2i)× (m+ n− 2i) matrix:

Sresi(Ψ0,Ψ1, t)

:=det



amam−1 · · · ai ai−1 · · · a0 Ψ0(t)t
n−i−1

am am−1· · · ai ai−1 · · · a0 Ψ0(t)t
n−i−2

. . .
. . .

. . .
. . .

. . .
...

amam−1 · · · ai ai−1 · · · Ψ0(t)t
i

. . .
. . .

. . .
. . .

...
amam−1 · · · ai Ψ0(t)t

am · · · ai+1 Ψ0(t)
bn bn−1 · · · bi bi−1 · · · b0 Ψ1(t)t

m−i−1

bn bn−1 · · · bi bi−1 · · · b0 Ψ1(t)t
m−i−2

. . .
. . .

. . .
. . .

. . .
...

bn bn−1 · · · bi bi−1 · · · Ψ1(t)t
i

. . .
. . .

. . .
. . .

...
bn bn−1 · · · bi Ψ1(t)t

bn · · · bi+1 Ψ1(t)



.

It is well-known [38, 39, 40] that deg(Sresi(Ψ0,Ψ1, t)) ≤ i.
The next proposition gives a relation between the sign of the

Sturm sequence, generated by applying Algorithm 1, and that of the
subresultant sequence.

Proposition 1 (Relation between the sign of the Sturm sequence
and that of the subresultant sequence) Let {Ψk(t)}qk=0 be the Sturm
sequence obtained by applying Algorithm 1 to A(0)(t) and A(1)(t).

If deg(Ψ0) ≥ deg(Ψ1), q ≥ 2 and deg(Sresi(Ψ0,Ψ1, t)) = i
for all i ∈ [0, deg(Ψ1)− 1], we have q = deg(Ψ1) + 1 and

sgn(Ψk(t
∗)) = sgn

[
(−1)

(k−1)k
2

+(k−1)(deg(Ψ0)−deg(Ψ1)+1)

×
(
lc(Ψ1)

)deg(Ψ0)−deg(Ψ1)+1
Sresdeg(Ψ1)−k+1(Ψ0,Ψ1, t

∗)

]
(k = 2, 3, . . . , deg(Ψ1) + 1). (5)

The relations (5) implies that we can compute each sign of
{Ψk(t

∗)}qk=2 by {Sresi(Ψ0,Ψ1, t
∗)}n−1

i=0 without computing the
coefficients of {Ψ(t)}qk=2. Algorithm 2 below evaluates the signs of
{Ψk(t

∗)}qk=0 based on (5). In practice, Algorithm 2 plays an ade-
quate role because deg(Sresi(Ψ0,Ψ1, t))= i (i∈ [0, deg(Ψ1)− 1])
holds almost always. (Note: In [35], we have given an algorithm
application to general cases including deg(Ψ0) < deg(Ψ1) or
deg(Sresi(Ψ0,Ψ1, t)) < i for some i ∈ [0, deg(Ψ0) − 1]). The
computational complexity for each Sresi(Ψ0,Ψ1,t

∗) is at most
O
(
(deg(Ψ0)+deg(Ψ1)−2i)log27

)
.

4.3. Numerical Examples

In this section, we examine the numerical performance of the alge-
braic phase unwrapping, based on Theorem 1 using Algorithm 2.
To make the situation likely to cause numerical instability of the al-
gebraic phase unwrapping over [0, 1], based on Theorem 1 using
Algorithm 1, we generate randomly a pair of polynomials:

A(0)(t):=(t−0.1)(t−0.21)(t−0.5)(t−0.75)(t−0.8)A(0)(t)

A(1)(t):=(t−0.15)(t−0.2)(t−0.34)(t−0.35)(t−0.81)A(1)(t)

}
,
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Fig. 3. Estimations of the unwrapped phase with Algorithm 1 and 2

where (i) A(0)(t) is a polynomial of degree 35 whose 5 roots are gen-
erated by the uniform distribution over {(−5,−1) ∪ (1, 5)} and 15
complex conjugate pairs of roots are generated by the uniform dis-
tribution over {(−1,−0.5)∪ (0.5, 1)}± j{(−1,−0.5)∪ (0.5, 1)},
and (ii) A(1)(t) is a polynomial of degree 15 whose 5 real roots and
5 complex conjugate pairs of roots are generated as for the above
A(0)(t). Note that polynomials A(0)(t) and A(1)(t) have close root
pairs (0.21, 0.8) ≈ (0.2, 0.81), which likely causes the catastrophic
cancellation [41, 42] explained in Sec. 4.1. Figure 3 depicts one
example where Algorithm 1 fails in phase unwrapping at t = 0.2
and t = 0.81 while Algorithm 2 succeeds in phase unwrapping over
[0, 1]. Table 1 summarizes the result for 1000 trials, where we ob-
serve that the total number of polynomials in failure by Algorithm 1
is reduced to less than 1/24 by replacing it with Algorithm 2.

Algorithm 2 Proposed algorithm for computing (4)

Input: A(0)(t), A(1)(t) ∈ R[t], a ∈ R and t∗ ∈ (a, b]

1:
Ψ0(t)←

A(0)(t)

(t− a)e0
, Ψ1(t)←

A(1)(t)

(t− a)e1
(where ei denotes

the order of t = a as a zero of polynomial A(i)(t) (i = 0, 1))
2: m← deg(Ψ0), n← deg(Ψ1), lc1 ← lc(Ψ1)
3: for k = 2 to (n+ 1) do

4: sgn(Ψk(t
∗))← (−1)

(k−1)k
2

+(k−1)(m−n+1)

× sgn
(
lcm−n+1

1 Sresn−k+1(Ψ0,Ψ1, t
∗)
)

5: end for

Output: {sgn(Ψk(t
∗))}deg(Ψ1)+1

k=0

Table 1. Performance comparison for pairs of random polynomials
Algorithm Total number of pairs (A(0), A(1)) in failure

Algorithm 1 249 (among 1000, in 64-bit floating point arithmetic)

Algorithm 2 10 (among 1000, in 64-bit floating point arithmetic)

5. CONCLUSION

In this paper, we have extended and stabilized the algebraic phase
unwrapping along the real axis. First, we have removed a assump-
tion premised in the original algebraic phase unwrapping. Second,
we have elucidated the path independence of two-dimensional phase
unwrapping completely, and extended the algebraic phase unwrap-
ping for a pair of bivariate polynomials. Third, after clarifying the
relation between the Sturm sequence and the subresultant sequence,
we have shown that the algebraic phase unwrapping along the real
axis can be stabilized significantly, by evaluating directly the signs
of the Sturm sequence, in the terms of the subresultant sequence.
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