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ABSTRACT
In this work, a new unsupervised Bayesian method for joint
image super-resolution and component separation is intro-
duced. More precisely, we are interested in super-resolution
for astrophysical map-making and separation between ex-
tended and point emissions. This is tackled as an inverse
problem in a Bayesian framework, where a Markovian model
is used as a prior for the extended emission and a student’s
t-distribution is attributed for the point sources component.
All model and noise parameters are unknown, therefore we
chose to estimate them jointly with the images. Neverthe-
less, both Joint Maximum A Posteriori (JMAP) and Posterior
Mean (PM) estimators are intractable. Hence, we propose to
approximate the true posterior by free-form separable distri-
bution using a gradient-like variational Bayesian approach,
which allows a joint update of the shape parameters of the
approximating marginals. Applications on simulated and real
datasets, obtained from Herschel space observatory, show a
good quality of reconstruction. Furthermore, compared to
conventional methods, our method gives a higher resolution
while conserving photometery and reducing noise.

Index Terms— Super-resolution, source separation,
Bayesian methods, astrophysics, Variational Bayesian

1. INTRODUCTION

The evolution and the formation of stars and galaxies are key
issues in astrophysics since the last decades. Launched in
2009, the space observatory Herschel [1] allows spectacular
mapping of nearby star-forming clouds, galaxies and distant
galaxies, in the far infrared and sub-millimeter domains. Her-
schel is the largest telescope in space, but the spatial resolu-
tion of the sky maps is limited in these spectral ranges. More-
over, the observed regions contain different components (dust
clouds, young stellar objects, unresolved galaxies, ...) which
must be separated in order to derive their properties.

For these reasons, we propose to tackle the problem of
high resolution map making and source separation jointly as
an inverse problem. This is achieved by means of a Bayesian

framework which permits seamless integration of prior infor-
mation. We focus in this study on separation between ex-
tended emission (dust clouds, . . . ) and point sources (unre-
solved galaxies, stars, ...). Several works have been devoted
for super-resolution like [2, 3] and for two components sepa-
ration problem like [4],[5], [6] or [7].

In the case of Herschel’s data processing, map-making
and components separation are done separately. For instance,
many methods are proposed for map-making like Coadd (nor-
malized retroprojection), SANEPIC [8], which lack correction
for the instrument optical system, and a Bayesian superresolu-
tion mapmaker [9] which is dedicated for extended emission
and suffers from artifacts in the presence of point sources.
However, the point source extraction is performed after the
map-making stage using point-spread function (PSF) fitting
like in DAOPHOT [10] or in a Bayesian way like in SUSSEX
[11]. Nevertheless, their source extraction quality is reduced
in the presence of variations in the background due to exis-
tence of extended emission.

Therefore, we opt for joint superresolution map-making
and component separation to overcome drawbacks of previ-
ous methods. In our Bayesian framework, a Markovian field
model is attributed to the smooth part and sparse t-distribution
prior was assigned to point source component. Moreover for
the forward modeling, a state of the art instrument model was
chosen so highest resolution is recovered. Furthermore, an
unsupervised approach is chosen in order to make the method
robust to prior parameters choice and facilitate its use by as-
trophysicists.

Nevertheless, the joint posterior has a complex expres-
sion and neither the joint maximum a posteroiri (JMAP) nor
the posterior mean (PM) estimators have a tractable form.
Thus, an approximation should be used to obtain a practical
solution. Several methods were used in literature such as
stochastic sampling by Markov Chain Monte Carlo (MCMC)
methods [12] or deterministic like the variational Bayesian
approach [13] which approximate the true posterior by a sep-
arable free-form distribution. Compared to the latter method,
MCMC methods are more time demanding especially for
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huge data sets since it needs too many samples to explore
the space. Therefore, we propose herein a new deterministic
method [14] based on the variational Bayesian approach since
treated data have generally hundred millions samples per ob-
served field. The novelties of our approach are: the joint
super-resolution and component separation framework, the
unsupervised approach where almost all the hyper-parameters
are estimated jointly with the unknowns, the joint estimation
of drift in detectors and the application of the new variational
Bayesian technique which provides an efficient estimator for
high dimensional datasets.

The paper is organized as follows: We present in section 2
our Bayesian approach with some details over the forward and
prior models. Then, the new variational Bayesian approach is
introduced and the expression of approximated posterior is
driven. Section 4 is dedicated for method tests with simulated
and real data from Herschel space observatory. Finally, we
conclude this work and give some perspectives.

2. BAYESIAN FRAMEWORK

In a map-making problem, one tries to restore the sky x given
several observations y and instrument model H. In this work,
y = {y1, . . . ,yT } is composed of several observations yi
covering the interest field and mutually shifted by a known
translation (figure 1).

Fig. 1. Schematic representation of the scanning process in
the telescope.

Supposing a white noise n adds to the data, the forward
model [9] is written as y = Hx + n. The instrument model
H = UC is a linear operator containing U the pointing ma-
trix which determines the field of view (FOV) of the detec-
tor and C is a convolution matrix accounting basically for
the instrument optics. In our joint restoration and separation
framework, sky x is decomposed into a smooth and a point
components (i.e. x = s + p), and it should be estimated
directly from the data. Then, the forward model reads y =
H (p+ s) + n. This is a highly ill-posed problem since data
does not contain discriminative information between smooth
and point sources which should be provided by prior informa-
tion. In addition, the operator H is ill-conditioned. Hence, we

consider a Bayesian approach to reduce the dimension of the
admissible solutions space. The ingredients for the posterior
distribution (likelihood and prior) are defined next. Then, the
problem of estimation is discussed in the following section.

2.1. Likelihood

The additive noise is supposed to have a white Gaussian dis-
tribution with a unknown variance ρ−1n . Furthermore, in phys-
ical applications, detectors have different variable offsets o
which should be estimated for each dataset. Using the for-
ward model, the likelihood is written as P(y|ρn,o,H,x) ∝
exp

(
−0.5ρn ‖y −Hx− o‖22

)
.

2.2. Priors

The choice of prior distributions for sky components is a
very crucial step since they determine the separation between
smooth and point sources. Therefore, a correlated multivari-
ate Gaussian Markov field, which favors small variations ,

was assigned to s, P(s|ρs) ∝ exp
(
− ρs(‖Dαs‖22+‖Dβs‖22)

2

)
,

where Dα and Dβ are finite differences matrices according
to axes α and β respectively, and ρs is a parameter determin-
ing the degree of correlation in the field which is considered
unknown.

The point sources p are attributed a separable homo-

geneous t-distribution, P(p|ρp, ν) ∝
∏
i

(
1 +

ρp
ν p

2
i

)− ν+1
2 ,

with ν as number of degrees of freedom and ρp a scale param-
eter which are set to some fixed values. It can be also rewrit-
ten as, P(p|ρp, ν) =

∏
i

∫
R
P(pi|ρi, ρp)P(ρ|ν)dρi, where

P(pi|ρi, ρp) = N (0, (ρpρi)
−1) andP(ρ|ν) = G

(
2
ν ,

ν
2

)
. The

latter form is more convenient to work with since it requires
dealing with Gaussian and Gamma distributions. Hence,
we adopt the approach proposed by [15] by adding an extra
parameter ρ and estimating it jointly with other unknowns.

For the model hyperparameters θ = {ρn, ρs,o} con-
jugate prior were assigned, (i.e. ρn ∼ G(γn, φc), ρs ∼
G(γs, φs) and o ∼ N (mo,Vo)). Other shaping parameters
(γn, φn, γs, φs,mo,Vo) are fixed to have flat distributions.

All the ingredient are now set to obtain the joint posterior
distribution P(s,p,ρ,θ|y). However applying the JMAP or
PM yields intractable form and an approximation is needed.

3. GRADIENT-LIKE VARIATIONAL BAYESIAN
APPROACH

The major difficulty faced when working with the previous
joint distribution is the mutual dependence between different
variables which yields an enormous variable space. There-
fore, the variational Bayesian approach, introduced by [16],
proposes to approximate the joint posteriorP(s,p,ρ,θ|y) by
a separable free form distribution Q(u) =

∏
iQ(ui), u =

{s,p,ρ,θ} that minimizes the Kullback-Leibler divergence,
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KL(P||Q) =
∫
Q(u) log

(
P(u|y)
Q(u)

)
du = log (P(y|M)) +

F(Q), where P(y|M) is the model evidence and F(Q)
is the free energy. For distributions from exponential fam-
ily, Q has an analytical form with mutually dependent pa-
rameters that should be updated singly which might be
time consuming. Hence, the new variational approach
[17] proposes to update the approximating marginals si-
multaneously. Like in gradient methods, this approach ex-
tends the notion of optimal step gradient to infinite func-
tional space. So, the approximating marginals have an it-
erative functional form and their form at iteration k read
Qk(ui) ∝ (Q(ui))

1−λ exp
(
λ 〈log (P(u,y))〉 ∏

j 6=i
Q(uj)

)
, with λ

being the gradient step that can be set to minimize the free
energy at each iteration. Herein, a strong separation is cho-
sen,Q(u) = Q(ρn)Q(ρs)

∏
iQ(si)Q(pi)Q(ρi)

∏
j Q(oj),.

By applying approximating marginals equation, we obtain
distributions from the same family as the priors,
Q̌(s) = N (m̌s, V̌s), Q̌(p) = N (m̌p, V̌p), Q̌(ρ) =

∏
G(γ̌i, φ̌i),

Q̌(ρn) = G(γ̌n, φ̌n), Q̌(ρs) = G(γ̌s, φ̌s), Q̌(o) = N (m̌o, V̌o),

with V̌k
s =

[
(1− λs)(V̌k−1

s )−1

+ λsDiag
(
ρ̄nH

tH + ρ̄s
(
Dt
αDα + Dt

βDβ

))]−1

,

m̌k
s = m̌k−1

s + λsV̌
k
s

(
ρ̄nH

t(y −H(m̌p + m̌s))

− ρ̄s(Dt
αDα + Dt

βDβ)m̌s

)
,

V̌k
p =

[
(1− λp)(V̌k−1

p )−1 + λpDiag
(
ρ̄nH

tH + ρpγ̌φ̌
t
)]−1

,

m̌k
p = m̌k−1

p + λpV̌
k
p

(
ρnH

t(y −H(m̌s + m̌p))− ρpγ̌φ̌m̌p

)
,

and ρ̄n = γ̌nφ̌n, ρ̄s = γ̌sφ̌s. Other shaping parameters and
theoretical details are given in [18]. At convergence (iteration
K), a MAP estimator is used on approximating marginals to
obtain the estimates (i.e. ŝ = m̌K

s , p̂ = m̌K
p , ...).

4. RESULTS

The proposed method was tested using simulated and real
data from the space observatory Herschel. For simulation,
smooth component was generated using a sample from cor-
related Gaussian field (ρs = 200) then superposed with 13
point sources with different intensities Ip ∈ [0.5, 18] (fig.2.a).
A white Gaussian noise (ρn = 600) was added to the for-
ward model output. Reconstruction result (fig.2.c)1 shows a
good accordance with the original map and a significant en-
hancement compared to Coadd (fig.2.b) method (xc = Uty

Ut1
),

used in the official data processing product [19]. The rela-
tive error in smooth component estimation for our method is

Es =
√
‖s−ŝ‖22
‖s‖2

= 4% and the error in flux estimation in point
source reconstruction (fig.2.e) Ep = 0.7%. In comparison

1A non-linear color-map was used to show the small variation in back-
ground representing smooth component. Meanwhile, high intensities are
given almost the same color.

with separation based on SUSSEX [11], we find Es,s = 35%
and Ep,s = 2.2%. Furthermore, the positions (fig.2.d) of
sources are accurately estimated by our method. Meanwhile
SUSSEX missed the weakest source (top-left) and replaced it
with a noisy point. This explains, in addition to reduced reso-
lution and noise, the important error in the smooth component
for SUSSEX. By studying the circular-mean power spectrum
(CMPS)[18] for smooth components (fig.2.f), we see that the
CMPS of our method corresponds to the true one for a large
frequency interval and it cut-offs at the frequency where noise
becomes dominant (fn). However, when all sources are re-
moved perfectly from coadded map (True residual), its CMPS
is bellow the true value due to the PSF effect for f < fn.
Beyond this frequency, the noise dominate the CMPS. Inter-
estingly, having residual of point sources in the smooth com-
ponent (SUSSEX case) deforms the CMPS and produces high
power in high frequencies.

Real data were treated also for field (17p732) taken by in-
strument SPIRE for wave band PSW. Our method (fig.2.h)
gives a sharper map compared to Coadd method (fig.2.g).
Furthermore, we can see that the smooth part after applying
SUSSEX (fig.2.i) still contains some point sources, even with
lowering the threshold. In comparison, smooth component of
our method ŝ (fig.2.j) looks more homogeneous. However,
by performing a CMPS study (fig.2.k) shows that both com-
ponents have the same power for f < fn. This may be ex-
plained by residual point sources in SUSSEX residual. More-
over, studying the point source reconstruction shows that our
method can detect more sources (around 300 sources com-
pared to 200 for SUSSEX). The comparison of a normalized
histogram of source fluxes (fig.2.l) proves the increasing num-
ber of estimated sources by our method. For high fluxes, both
methods estimate the same number of sources. Nevertheless,
our method detects more sources for lower fluxes before it
cut-off for so low fluxes due to noise. We compared also
with DAOPHOT [10] with low threshold, many noise point
were detected as sources without enhancing detection in mid-
dle fluxes range. However, more study is needed to validate
the new sources from the astrophysical point of view.

5. CONCLUSIONS

We have presented a Bayesian approach for high resolu-
tion map-making with joint separation between smooth and
point sources. Discriminative priors (Markov field and t-
distribution) were introduced for the separation and a new
gradient like variational Bayesian method was applied to
obtain the estimators. Method validation against real and
simulated data confirms resolution enhancement and good
separation capacity. However, noise model can be enhanced
by supposing a pink one instead of the white one used. In
addition, we are looking in non stationary Markovian models
for cases when smooth components exhibit several variation
modes.
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Fig. 2. (a) Original simulated field x, (b) coaddition mapmaking, (c) our method x̂ = ŝ+ p̂, (d) point sources position in image
index, (e) point sources fluxes [Jy/Beam], (f) circular-mean power spectrum, (g) coaddition map-making for field 17p732, (h)
our method x̂, (i) residual map of SUSSEX method (extended emission), (j) estimated extended emission ŝ, (k) circular-mean
power spectrum, (l) normalized histogram: normalized number of sources vs flux [Jy/Beam]5833
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