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ABSTRACT

The compressed sensing paradigm allows to efficiently

represent sparse signals by means of their linear measure-

ments. However, the problem of transmitting these measure-

ments to a receiver over a channel potentially prone to packet

losses has received little attention so far. In this paper, we

propose novel methods to generate multiple descriptions from

compressed sensing measurements to increase the robustness

over unreliable channels. In particular, we exploit the democ-

racy property of compressive measurements to generate de-

scriptions in a simple manner by partitioning the measure-

ment vector and properly allocating bit-rate, outperforming

classical methods like the multiple description scalar quan-

tizer. In addition, we propose a modified version of the Basis

Pursuit Denoising recovery procedure that is specifically tai-

lored to the proposed methods. Experimental results show

significant performance gains with respect to existing meth-

ods.

Index Terms— Compressed sensing, multiple descrip-

tion coding, error resilience

1. INTRODUCTION

In recent years, compressed sensing (CS) [1, 2] has drawn

great attention thanks to its remarkable results concerning

signal recovery from vastly undersampled measurements. CS

opened a new path to signal sampling and acquisition, show-

ing that signals could be acquired directly in a compressed

fashion, in the perspective of replacing the traditional ap-

proach based on collecting as many samples as possible and

then removing the redundancy.

However, from the standpoint of practical systems, CS

measurements typically need to be transmitted to a receiver.

This raises the concern of how to protect the measurements

when the communication channel is unreliable. A possible

protection technique is represented by multiple description

coding (MDC). MDC allows to increase the robustness to

channel losses by creating multiple correlated representations

of the original data, each carrying enough information to de-

code separately the data with a certain fidelity, in case of loss
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of the other descriptions. The decoding stage consists of side

decoders, able to recover a low-quality version of the data

when a single description is received, and a central decoder,

able to jointly exploit all the descriptions for the best decod-

ing quality. Multiple descriptions can be produced in various

stages of the transmission chain. The MDC literature pro-

poses methods which generate descriptions by preprocessing

the source (e.g., a trivial method is to separate even and odd

samples [3]), by applying a correlating transform [4], by us-

ing an ad-hoc quantizer [5], or by applying channel codes to

a layered version of the data to be transmitted [6].

In this paper we propose an MDC approach to CS to make

it more robust to unreliable channels. Previous techniques are

based on the idea of generating descriptions before sensing,

e.g., in [7] an image is partitioned into two subimages be-

fore sensing the wavelet coefficients of each. However, we

argue that it could be much more appealing to create the de-

scriptions after the measurement process. This is supported

by the fact that specialised hardware (e.g., [8]) may be used

to directly acquire the measurements, preventing any prepro-

cessing of the signals. In particular, in this paper we propose

two novel techniques, graded quantization (CS-GQ) and CS-

SPLIT, for multiple description coding of the measurements.

We compare their performance to CS-MDSQ, a system ap-

plying a multiple description scalar quantizer to the measure-

ment vector. We will show that CS-GQ and CS-SPLIT, which

exploit the democracy property of the measurements, have

lower complexity and better performance than CS-MDSQ,

which instead relies on a classic MDC method and, as such,

does not fully exploit the properties of CS. Moreover, we

show how the parameters of CS-GQ could be optimized on

the expected description-loss probability. We also address the

decoding process, proposing a variant of the Basis Pursuit De-

noising (BPDN) algorithm for CS reconstruction, which is

tailored to CS-GQ and can provide significant gains with re-

spect to the standard BPDN. Finally, we provide a bound on

the rate-distortion performance of CS-SPLIT and CS-MDSQ.

2. BACKGROUND AND NOTATION

CS is a novel theory for signal sensing and acquisition [1, 2]

able to acquire signals in an already compressed fashion, us-

ing fewer coefficients than dictated by the classical Nyquist-
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Fig. 1. CS-GQ

Shannon theory. Let us consider a signal x ∈ R
n, hav-

ing a sparse representation under basis Ψ ∈ R
n×n: x =

Ψθ with ‖θ‖0 = k ≪ n, being ‖θ‖0 the l0 norm of θ,

i.e., the number of its nonzero entries. We acquire measure-

ments as a vector of random projections y = Φx = ΦΨθ,

y ∈ R
m, using a sensing matrix Φ ∈ R

m×n. A very popular

way to recover the original signal from the measurements is to

solve an optimization problem that minimises the l0 norm of

the signal in the domain where the signal is sparse. However,

this problem is computationally intractable due to its NP-hard

complexity, so it is common to consider a relaxed form using

the l1 norm, which can be solved by means of convex opti-

mization techniques. In presence of bounded noise it is com-

mon to consider an l2 norm constraint using a bound ǫ on the

noise norm, see (1). This is also used when dealingwith quan-

tization, which is an important issue in practical systems that

require finite precision in the representation of the measure-

ments. In the remainder of the paper we deal with quantized

measurements.

θ̂ = argmin
θ

‖θ‖1 subject to ‖y − ΦΨθ‖2 ≤ ǫ (1)

These methods are successful provided that enough measure-

ments have been acquired, typically m = O
(

k log n
k

)

. It is

relevant to notice the democracy of the measurements [9], in

the sense that each contributes roughly in the same manner to

the reconstruction of the signal and no measurement carries

significantly more information than the others.

3. MULTIPLE DESCRIPTIONS FOR CS

In this section we describe the proposed multiple description

techniques with particular focus on the case of two balanced

descriptions. CS-GQ and CS-SPLIT rely on partitioning the

vector of measurements and quantize the subsets. Those

methods are compared against CS-MDSQ that is derived

from the classical MDC technique of the MDSQ. The mea-

surements are quantized with a uniform scalar quantizer (with

the exception of CS-MDSQ). More complex quantizers could

also be used, e.g., the Lloyd-Max method or vector quanti-

zation, but they are regarded as computationally too complex

and with little or no gain as shown in [10].

3.1. Graded Quantization (CS-GQ)

3.1.1. Encoding

CS-GQ (see Fig. 1) creates two descriptions by having each

measurement coded in a redundant way. The first descrip-

tion contains the first m
2 measurements quantized with 2B
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Fig. 2. Performance of modified BPDN for side decoding of CS-GQ

vs. standard BPDN

levels and the other half with 2b levels, with B ≥ b, corre-

sponding to quantization step sizes ∆1 and ∆2 respectively.

Conversely, the second description uses 2b and 2B levels re-

spectively. Since the uniform scalar quantizer produces an

embedded codebook, it is possible to regard the measurement

quantized with the lower rate as being made of the most sig-

nificant bits of the high-rate version of the samemeasurement.

Thanks to the democracy of the measurements, it is indiffer-

ent which measurements are actually finely or coarsely quan-

tized. This is also the reason why the two descriptions turn

out to be balanced. It would also be possible to obtain un-

balanced descriptions by varying the ratio of measurements

quantized at high and low rates; this is left for further work.

3.1.2. Decoding

Because each description contains as many measurements as

acquired during the sensing process, any of them can be de-

coded separately to provide a basic quality level, essentially

depending on the quantization step sizes employed (see Sec.

5). Since there are two distinct groups of measurements (fine

and coarse quantization) inside each description, we can use

this knowledge to improve the BPDN algorithm in the recon-

struction phase at the side decoders. In particular we set two

l2 constraints, one for each subset, instead of a single one.

Moreover, we add two extra constraints called quantization

consistency to ensure that the measurements of the recon-

structed signal fall inside the quantization bins of size∆1 and

∆2 of the original measurements. Hence, reconstruction at

each side decoder is performed solving the following prob-

lem:

θ̂ = argmin
θ

‖θ‖1 subject to



















∥

∥y(1) − Φ(1)Ψθ
∥

∥

2
≤ ǫ1

∥

∥y(1) − Φ(1)Ψθ
∥

∥

∞
≤ ∆1

2
∥

∥y(2) − Φ(2)Ψθ
∥

∥

2
≤ ǫ2

∥

∥y(2) − Φ(2)Ψθ
∥

∥

∞
≤ ∆2

2

In our simulations (see Fig. 2) the modified reconstruc-

tion problem shows significant gains with respect to standard

BPDN (1). This is mainly due to the double l2 constraint,

while quantization consistency provides a small gain overall.
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Fig. 3. CS-SPLIT

The central decoder instead always selects the measurement

with finer quantization and runs the standard BPDN proce-

dure (1). This means that some pieces of information are

discarded by the central decoder because they are redundant.

The issue of redundancy is central in MDC. The descriptions

must share some information on the signal, in order to be in-

dependently decodable. In the proposed CS-GQ scheme, the

amount of redundancy can be tuned in a very flexible way

through the choice of parameters b and B, depending on the

desired level of quality at the side and central decoders. These

levels may also depend on the channel error or packet loss

rate, in that frequent losses are typically coped with by select-

ing a higher degree of redundancy.

3.2. CS-SPLIT

CS-SPLIT (see Fig. 3) consists in quantizing all the measure-

ments with rate R and partitioning the measurements vector

into two subsets with m
2 measurements each. The side de-

coders receive only one subset and recover the signal using

(1), whereΦ is the appropriate submatrix of the original sens-

ing matrix. Instead, the central decoder can use all the mea-

surements. CS-SPLIT can be regarded as a special case of

CS-GQ in which B = R and b = 0. In this special case

no redundant information is transmitted. In fact, the central

decoder does not discard any information as it happens in CS-

GQ. CS-SPLIT may be an appealing solution thanks to its ex-

treme simplicity, as it does not require any additional process-

ing other than splitting the measurement vector. However, we

shall discuss in Sec. 5 how CS-SPLIT always outperforms

CS-GQ when the number of measurements is high.

3.3. CS-MDSQ

CS-MDSQ creates multiple descriptions of the measurements

using a special quantizer called MDSQ. The MDSQ is a gen-

eral technique for MDC developed before the advent of CS,

so it does not leverage the democracy property as the previous

systems do. TheMDSQ can be optimised at several levels and

can be tuned to operate at different points on the central dis-

tortion vs. side distortion curve. For the results in this paper

we used the optimization method outlined in [5], using nested

assignment for the index assignment matrix.

4. RATE-DISTORTION PERFORMANCE FOR

CS-SPLIT AND CS-MDSQ

Theorem 1. Consider a k-sparse signal x ∈ R
n and its mea-

surements y = Φx, y ∈ R
m. Assume that the nonzero en-

tries have zero mean and variance σ2
x. Assume that the en-

tries of the sensing matrix Φ are i.i.d. Gaussian random vari-

ables with Φij ∼ N (0, 1
m
) and such that m > 60 logn and
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(b) Central relative distortion

Fig. 4. n = 256, k = 10,m = 50, Gaussian sensing matrix

k < 1
4 (

1
µ
+ 1), where µ is the coherence of Φ. Furthermore,

assume that the BPDN algorithm is used for reconstruction.

Then the distortion D = ‖x− x̂‖22 in the reconstructed sig-

nal as a function of rate R is bounded as follows, with high

probability:

k2

m
σ2
x2

−2R ≤ Dside(R) ≤
4kσ2

x2
−2R

1−
√

30 logn

m
(4k − 1)

(2)

k2

m
σ2
x2

−2R ≤ Dcentral(R) ≤
4kσ2

x2
−2R

1−
√

15 logn

m
(4k − 1)

(3)

A very similar argument can be used to analyse CS-

MDSQ. The assumptions are the same as before, but the

MDSQ performance is limited by the Ozarow bound [11].

Theorem 2. Under the same hypotheses of Theorem 1, the

distortion D = ‖x− x̂‖22 in the reconstructed signal as a

function of rate R is bounded as follows, with high probabil-

ity:
σ2
x

m
k22−2R ≤ Dside(R) ≤

4σ2
xk2

−2R

1−
√

15 logn

m
(4k − 1)

(4)

σ2
x

m
k22−4RγD ≤ Dcentral(R) ≤

4σ2
xk2

−4RγD

1−
√

15 logn

m
(4k − 1)

(5)
with

γD =



1−





(

1−
Dsm,side

σ2
x

m
k

)

−

√

√

√

√

D2

sm,side

σ4
x

m2 k2

− 2−4R





2



−1

andDsm,side = E

[

(yi −Q (yi))
2
]

.

The proofs of the previous results and experimental re-

sults showing their validity are omitted for brevity. By look-

ing at the lower bounds it can be seen that CS-SPLIT can po-

tentially achieve (Dside, Dcentral) points that are unavailable
for CS-MDSQ.

5. EXPERIMENTAL RESULTS

In this section we compare the reconstruction performance

of the side and central decoders of the proposed methods.

5827



0.2 0.4 0.6 0.8
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Side relative distortion

C
e

n
tr

a
l 
re

la
ti
v
e

 d
is

to
rt

io
n

 

 
Convex hull

FULL REDUNDANCY

CS−SPLIT

Optimal point
B = 7
b = 3

Fig. 5. Central vs. side distortion tradeoff plot. n = 256,
k = 10,m = 50, Gaussian sensing matrix. Optimal point for

p = 0.08.
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Fig. 6. n = 256, k = 20. CS-GQ: B = 6, b = 2. CS-SPLIT:
R = 8. CS-MDSQ: R = 4. Gaussian sensing matrix

As distortion we consider the normalised error norm
‖x−x̂‖

2

‖x‖
2

.

First, we characterise the relative performance of CS-GQ and

CS-SPLIT at equal bit-rate for the same number of measure-

ments. Suppose that CS-SPLIT uses a rate of R bits per mea-

surement, then we must have B + b = R. From Fig. 5 we

can see that CS-GQ improves side decoding performance for

increasing redundancy until the full redundancy case (B = b)

is reached, while at the same time central decoding perfor-

mance worsens. CS-SPLIT is the extreme case with best cen-

tral but worst side performance. The appropriate values of

B and b can be selected from the trade-off plot show in Fig.

5, according to the desired trade-off between side and cen-

tral distortion. If a memoryless channel has a probability p

of losing a description, we can define an average distortion

Davg = 2 ·Dside ·p(1−p)+Dcent · (1−p)2+p2. Keeping in

mind thatDcent is a function ofDside and letting
dDavg

dDside
= 0,

we get dDcent

dDside
= − 2p

1−p
. This is the slope of the straight line

that is tangent to the trade-off plot in the point representing

the optimal trade-off between central and side distortion, so it

can be used to determine the optimal values of B and b for a

channel with given packet-loss rate. In our case the feasible

points are a discrete set and this method can only select one of

the points lying on the convex hull. Notice that p = 0 selects
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Fig. 7. n = 256, k = 20. CS-GQ: m ∈ [78, 122], B = 6,
b = 2. CS-SPLIT: m ∈ [90, 140], R = 7. CS-MDSQ: m ∈
[79, 123], R = 4. Gaussian sensing matrix

CS-SPLIT (there are no losses, hence we seek the best central

performance and minimum redundancy) and that for p → 1
full redundancy is approached where CS-GQ behaves like a

repetition code.

We should also notice that CS-GQ providing gains at the

side decoders, with respect to CS-SPLIT, is the typical be-

haviour when m is small (e.g., m is so small that CS-SPLIT

fails side decoding, or bigger but still in the regime in which

extra measurements are more important than finer quantiza-

tion). In fact, when m grows very large, CS-SPLIT is always

favourable due to the convenience in investing the budgeted

bits in finer quantization rather than in extra measurements.

Comparing the performance with respect to CS-MDSQ,

we can see that if the number of measurements is fixed a pri-

ori, CS-GQ and CS-SPLIT can benefit from higher quantiza-

tion rates and thus outperformCS-MDSQmost of the times as

shown in Fig. 5. CS-MDSQ can be advantageous only when

we are forced to acquire few measurements, but for the same

total bit-rate a slight oversampling can allow to use the more

efficient graded quantization. Fig. 5 shows the case of a fully

tunable system in which both the number of measurements

and the rate can be adjusted. Also in this case we can see that

graded quantization has lower reconstruction distortion both

for central and side decoding in many practical settings.

6. CONCLUSIONS

In this paper we showed how the democracy property of CS

measurements enables to address the multiple descriptions

problem in a simple and yet effective manner. We proposed

methods to generate multiple descriptions from CS measure-

ments, without the need of preprocessing the signal. As a term

of comparisonwith classical literature onMDC, CS-MDSQ is

derived from the MDSQ, and does not explicitly rely on prop-

erties of CS. In fact, we showed that it can be outperformed

by the other proposed methods in many cases. CS-GQ and

its limit case CS-SPLIT leverage the democracy of the mea-

surements to create balanced descriptions in a straightforward

manner, yet allowing great flexibility in selecting the desired

trade-off between central and side distortion.
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