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ABSTRACT

The recent progress of compressive sensing (CS) theory shows that
perfect reconstruction is possible when the data are sampled ran-
domly and compressed greatly. This revolutionary theory strongly
advocates the irregular sampling pattern in the process of seismic
data acquisition, leading to a highly reduced acquisition cost. The
complete seismic record can be reconstructed from the sparsely few
sampled seismic data. In this paper, an analysis version of iterative
half thresholding algorithm is introduced to interpolate the seismic
data, using the tight frame dictionary. Inspired by the newly pro-
posed spectral compressive sensing theory and the favorable charac-
teristics of tight frame, we employ the redundant Fourier transform
to sparsely represent the oscillating seismic data. A double zero-
padding strategy in spatial direction of seismic data is suggested to
further enhance the reconstruction quality, allowing for the improved
interpolation performance and the increased computational cost and
storage requirement. The validity of the proposed method is demon-
strated by experimental result.

Index Terms— Compressive sensing, iterative shrinkage-
thresholding, half thresholding, seismic trace interpolation, tight
frame

1. INTRODUCTION

1.1. Background

Acquisition of reflection seismic data is a multidimensional resource-
intensive process. However, fully recording the seismic data is
unrealistic for many reasons: a finite number of active recording
channels, surface obstacles, as well as some other physical and fi-
nancial constraints [1]. Therefore, the prestack trace interpolation of
these uniformly or nonuniformly sampled seismic records prior to
migration is seriously needed [2].

Seismic data interpolation is an important and ongoing research
area in seismic signal processing community. There exist many ef-
fective methods to recover the missing traces from a regularly or
irregularly sampled seismic data. These methods can be roughly
classified into two categories: (1) Using the linear, spatial predic-
tion filters to interpolate regularly sampled seismic data [3, 4, 5, 6],
just to name a few. These methods find the missing traces by buid-
ing an auto regressive (AR) model, based on the principle that the
missing traces spaced equally can be exactly interpolated by a set
of linear equations [3]. (2) Reconstruction with certain types of
transforms such as the Fourier transform [7], the Radon transform
[8], and the curvelet transform [9]. Some well known algorithms
which fall under this umbrella can handle the non-uniformly sam-
pled seismic records, including iterative soft thresholding method
[9], minimum weighted norm interpolation (MWNI) method [10],

anti-leakage Fourier transform (ALFT) method [11], projection onto
convex sets (POCS) method [12, 13, 14] etc.

1.2. This paper

The recent progress of the theory of compressive sensing (CS) [15,
16] provides a nice way to understand sparseness-based interpola-
tion. The data are allowed to be sampled randomly and compressed
greatly [17, 18, 19]. It leads to a highly reduced cost in the process of
data acquisition, barely losing the information of geophysical data.
Curvelet-based seismic interpolation using iterative soft threshold-
ing algorithm have obtained convincing results [9].

This article will follow the line of sparse and redundant repre-
sentations to interpolate the irregularly sampled seismic traces. It is
organized as follows. In Section 2, we give the mathematical frame-
work of sparsity-promoting seismic trace interpolation problem. The
popular iterative shrinkage-thresholding (soft and hard thresholding)
algorithm is presented. In Section 3, we give the analysis-based iter-
ative half thresholding based on newly proposed `1/2 regularization
theory. Inspired by the spectral compressive sensing theory and the
favorable characteristics of tight frame, we propose the redundant
Fourier transform with double over zero-padding strategy to sparsely
represent the oscillating seismic data, allowing for the improved re-
construction performance and the increased computational cost and
storage requirement. The experimental results and the concluding
remarks are given in Section 4 and in Section 5, respectively.

2. SPARSITY-PROMOTING SEISMIC TRACE
INTERPOLATION

2.1. Problem statement

Now let us formulate the problem of seismic trace interpolation. The
observed seismic record dobs, including many missing samples, is
connected with the complete seismic data d to be recovered via the
relation

dobs =Md, (1)

in which M denotes a diagonal matrix with diagonal entries
1 for the observed samples and 0 otherwise. For the conve-
nience of mathematical expression, a 2-D discrete seismic data
set d0 = [dt1,t2 ]1≤t1≤n1,1≤t2≤n2 ∈ Rn1×n2 can be reordered as
a vector d ∈ Rn, n = n1 × n2 through lexicographic ordering
dt1,t2 → d(t2−1)n1+t1 . This kind of expression can be easily gen-
eralized to higher dimensional cases. To recover the missing traces
in the seismic data, one needs to project the seismic data into certain
transform domain, that is,

d = Ax, (2)
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where A ∈ Rn×m corresponds to a synthetic operator of an orthog-
onal basis (n = m) or a frame (n 6= m). This leads to

dobs =Md =MAx = Kx, (3)

where x indicate the representation coefficients in the transform do-
main, K = MA. Combining some priori knowledge, the problem
of seismic trace interpolation can be written as

min
x
J(x) =

1

2
‖dobs −Kx‖22 + τR(x), (4)

in which the priori constraint term can be R(x) = ‖x‖pp, and p = 2
is exactly the classical Tikhonov regularization [20].

2.2. Iterative shrinkage-thresholding algorithm

The sparsity in certain transform domain always holds well from a
large number of informed studies, and can be taken as a reasonable
constraint [21], which corresponds to the `0-norm of the unknown x,
i.e., R(x) = ‖x‖0 = #{xi 6= 0}. Due to the nonconvex complex-
ity of the `0-norm minimization, the theory of compressive sensing
(CS) shows that `1-norm can be taken as an alternative to `0-norm,
and proves to be able to achieve the same sparseness as the `0-norm
[16, 15]. With these sparsity constraints, the general form of the cor-
responding algorithm, namely the iterative shrinkage-thresholding
(IST) algorithm, can be specified as

xk+1 = Tλ(τ,p)(x
k +K∗(dobs −Kxk)) = Tλ(τ,p)(B(xk)), (5)

whereB(xk) = xk+K∗(dobs−Kxk); k denotes the iteration num-
ber; K∗ indicates the adjoint of K. Tλ(τ,p)(x) is the thresholding
operator performed elementwise with threshold λ(τ, p) in the sense
that

Tλ(τ,p)(x) = (tλ(τ,p)(x1), tλ(τ,p)(x2), . . . , tλ(τ,p)(xm))T (6)

and

tλ(τ,p)(u) :=

{
fλ(τ,p)(u) |u| > λ(τ, p)
0 |u| ≤ λ(τ, p), (7)

When p = 1, R(x) = ‖x‖1, we have

fλ(τ,1)(u) = u− λ u

|u| , λ(τ, 1) = τ. (8)

When p = 0, R(x) = ‖x‖0, we have

fλ(τ,0)(u) = u, λ(τ, 1) =
√
2τ . (9)

(8) and (9) are the so-called soft and hard thresholding [22, 23].

3. PROPOSED ANALYSIS-BASED ITERATIVE HALF
THRESHOLDING METHOD USING REDUNDANT

FOURIER TRANSFORM

3.1. Iterative half thresholding algorithm and regularization
parameter-setting strategy

Recently, researchers show that exact reconstruction is possible with
substantially fewer measurements using nonconvex `p-norm mini-
mization, 0 < p < 1 [24]. Particularly, an `1/2 thresholding rep-
resentation theory has been developed [25], and the corresponding

iterative half thresholding algorithm is also suggested. This algo-
rithm can also be considered as a special case of IST algorithm (5).
The only difference lies in the thresholding function. That is to say,

p = 1/2, R(x) = ‖x‖1/21/2

λ(τ, 1/2) = 3
2
τ2/3

fλ(τ,1/2)(u) =
2
3
u
(
1 + cos( 2

3
π − 2

3
arccos( τ

8
( |u|

3
)−

3
2 ))
)
.

(10)
Suppose the solutions of the sparsity-promoting seismic data

interpolation problem (4), x∗ ∈ Rm, are of q-sparsity. Without
loss of generality, we assume: |[B(x∗)]1| ≥ |[B(x∗)]2| ≥ . . . ≥
|[B(x∗)]m|. Thus, according to (10), in iterations we require:{

|B(x∗)|i > λ(τ, 1/2) = 3
2
τ2/3, i ∈ {1, 2, . . . , q}

|B(x∗)|j ≤ λ(τ, 1/2) = 3
2
τ2/3, j ∈ {q + 1, . . . ,m},

which implies(
2

3
|[B(x∗)]q+1|

)3/2

≤ τ <
(
2

3
|[B(x∗)]q|

)3/2

.

Therefore, a natural regularization parameter-setting strategy can be
obtained with ease:

τk = (1−α)
(
2

3
|[B(xk)]q+1|

)3/2

+α

(
2

3
|[B(xk)]q|

)3/2

, (11)

where α ∈ [0, 1).

3.2. The analysis-based IST algorithm: a general formulation

It is interesting to note that (5) is a synthesis formulation since the
complete seismic data d can be synthesized from its representation
coefficients, d̂ = Ax̂, where x̂ is the minimizer of problem (4) [26].
In what follows we will present its analysis formulation.

Consider a tight frame A such that A∗A = I . Recall that K =
MA,M is a diagonal matrix such thatM∗ =M =M2,M∗dobs =
M2d = dobs. From (5) we obtain

dk+1 = Axk+1

= ATλ(τ,p)(x
k +K∗(dobs −Kxk))

= ATλ(τ,p)(A
∗dk + (MA)∗(dobs −MAxk))

= ATλ(τ,p)(A
∗(dk +M∗(dobs −Mdk)))

= ATλ(τ,p)(A
∗(dobs + (I −M)dk)).

This updating rule analyzes the complete seismic data to be recon-
structed as the unknown directly. Thus we call

dk+1 = ATλ(τ,p)(A
∗(dobs + (I −M)dk)) (12)

the analysis-based IST algorithm. The differences among `1, `0 and
`1/2 constraints only correspond to different thresholding functions,
as shown in (8), (9) and (10). The analysis version implies smaller
memory requirement in iterations in cases that the number of trans-
forming coefficients is much larger than the number of data elements
when a tight frame based transform A is used [27].

3.3. Excessively zero-padded FFT: an ideal tight frame dictio-
nary with a spectral compressive sensing perspective

As can be seen from the previous subsection above, our analysis-
based iterative half thresholding algorithm only requires A to be a
tight frame. The informed studies has shown that a redundant tight
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frame preserves energy and ensures an isometric relation between
the input signal and the output coefficients, allowing us to use its ad-
joint as its inverse. More importantly, its redundancy, resulting from
its overlapping supports, leads to robust signal representation for the
complex structure of the signals [28]. Thus, partial loss of data can
be tolerated without adverse effects [29]. These characteristics stim-
ulate researchers to utilize the tight frame based transforms (e.g., un-
decimated discrete wavelet transform (UDWT) [30], curvelet trans-
form [27], framelet transform [29]) in image denoising, inpainting
and many other important applications.

Different from natural images, the seismic data can be consid-
ered as the convolved result of the underground layer structure and
the seismic wavelet (always a ricker wavelet). Thus the oscillating
features in seismic data requires the Fourier transform as an ide-
al dictionary for sparse representation. Inspired by the newly pro-
posed spectral compressive sensing (SCS) theory [31] and the in-
triguing properties of frames, in this article we suggest using the re-
dundant Fourier transform as the sparsifying dictionaryA, which can
be easily constructed by zero-padding. Conventionally, the Fouri-
er transform is preferred to pad to the length of powers of 2 to re-
duce the computational cost and memory requirement, using the fast
and in-place implementation. For the seismic data d0 ∈ Rn1×n2 ,
2p1−1 ≤ n1 < 2p1 , 2p2−1 ≤ n2 < 2p2 , a practical and frequently
adopted strategy is padding zeros to the size 2p1 × 2p2 .

To combat the spectral leakage and improve the quality of the re-
constructed seismic data,in this paper we propose an excessive zero-
padding scheme for FFT: The seismic data should be zero-padded to
the size L1 = N1 × 2p1 , L2 = N2 × 2p2 ,yielding the augmented
data

d =

(
d0 0n1×(L2−n2)

0(L1−n1)×n2
0(L1−n1)×(L2−n2)

)
. (13)

As will be shown in our experiment result, double zero-padding in
spatial (offset) direction of the seismic data (N2 = 2), is a nice
tradeoff allowing for the improved reconstruction performance and
the increased computational cost and storage requirement.

4. EXPERIMENTAL RESULTS

We also give the optimal regularization parameter-setting scheme for
soft and hard thresholding for the convenience of comparison in our
experiment:

(soft) : τk = (1− α)|[B(xk)]q+1|+ α|[B(xk)]q|,

(hard) : τk = (1−α)
(
1

2
|[B(xk)]q+1|2

)
+α

(
1

2
|[B(xk)]q|2

)
,

which can be easily derived in the similar way as (11). The q-sparsity
is controlled by the ratio q/m, which is the proportion of coefficients
to be thresholded in all resulting coefficients under frame A. To
evaluate the quality of our recovery, we define signal-to-noise-ratio
(SNR) as SNR = 10 lg(‖d‖2/‖d− d̂‖2) in decibel (dB).

We utilize one shot seismic data produced using Marmousi mod-
el (a benchmark model in geophysical community), as show in Fig.
1a. It is randomly sampled with a decimating rate 30%, see Fig. 1b.
The algorithms are set to perform 100 iterations to obtain a stable
converged solution. In all our experiment, the parameters are set:
α = 0, q = 10%m. The first experiment is dedicated to show the
validity of the iterative half thresholding algorithm. The interpolat-
ed result of this method is also compared with that of the popular
soft and hard thresholding method, see Fig. 1b–d. The difference
between the reconstructed data and the original complete one are

Fig. 2. The SNRs of soft, hard and half thresholding method

Table 1. The SNRs of different zero-padding strategies
(N1, N2) (1,1) (1,2) (1,4) (2,1) (4,1) (2,2)
SNR (dB) 14.28 14.67 14.68 14.28 14.28 14.67

shown in Fig. 1b’–d’. clearly, our method do no harm to the struc-
ture of the seismic data. We also plot the SNR curve in Fig. 2 to
monitor the varying reconstruction performance. As can be seen
from this figure, half thresholding is indeed superior to soft and hard
thresholding, according to the final result of SNR.

Note that the above result is obtained without zero-padding (data
size n1 × n2). The next experiment is devoted to find the proper
zero-padding parameters Ni(i = 1, 2). In view of the increased
computational cost and memory requirement, we only consider the
cases: Ni = 1, 2, 4. From Table 1, we surprisingly find that: (1)
Zero-padding in temporal direction of the seismic data does nothing
to improve the reconstruction performance; (2) Double over zero-
padding in spatial (offset) direction can obtain better SNR, and more
zero-padding improves the reconstruction very little.

5. CONCLUSION

This paper addresses seismic trace interpolation as a `1/2 regular-
ization problem. The analysis-based iterative half thresholding al-
gorithm combined with the redundant Fourier transform is utilized.
Compared with soft and hard thresholding, the validity of the half
thresholding method is demonstrated by numerical example, using
a shot produced by Marmousi model. A double over zero-padding
strategy in spatial direction of the seismic data can further enhance
the reconstruction quality. Even though this paper only presents the
result of the 2-D seismic data, multidimensional implementation of
the proposed methods will definitely enhance the interpolated result-
s, and is a subject of further research.
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sampling interval=0.003 s. (a’) Irregularly sampled data of (a), random decimating rate=30%, SNR=5.19 dB. (b–d) Interpolated result using
iterative soft, hard and half thresholding algorithm, SNR= 9.98 dB, 8.10 dB and 11.41 dB. (b’–d’) The difference between (b), (c), (d) and
(a).
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