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ABSTRACT

The sampling, quantization, and estimation of a bounded
dynamic-range bandlimited signal affected by additive inde-
pendent Gaussian noise is studied in this work. Considering
the desirability of cheap, low-precision sensors, the use of
single-bit analog to digital convertors (ADCs) is considered.
For bandlimited signals, the distortion due to additive in-
dependent Gaussian noise can be reduced by oversampling
(statistical diversity). The pointwise expected mean-squared
error is used as a distortion metric for signal estimate in this
work. If N is the oversampling ratio with respect to the
Nyquist rate, then we show that a distortion of O(1/N) can
be achieved with single-bit ADCs that record the signs of the
observed noisy signal. This improves the (best known) dis-
tortion result by Masry for quantizing bandlimited signals in
noise, using signs of noisy signal samples, from O(1/N2/3).
This improvement comes by exploiting the structure of ban-
dlimited signals in the estimation of original signal from
noisy quantized bits.

Index Terms— sampling methods, signal sampling, esti-
mation, quantization

1. INTRODUCTION

Consider a bandlimited signal (or field) quantization prob-
lem, where the samples are affected by additive independent
and identically distributed (i.i.d.) Gaussian noise. In sensor-
networks, low-cost sensing devices are desirable; therefore,
single-bit analog to digital converters (ADCs) are desirable
for quantization. In a distributed setup, where sampling pre-
cedes filtering, noise induced distortion can be reduced by
oversampling. The distortion and oversampling tradeoff for
bandlimited signals in the presence of noise under single-bit
quantization is the main theme of this work.
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A single-bit ADC with comparison threshold at zero can
record the sign of a sample. The term single-bit quantiza-
tion will be used instead of sign of a sample from now on.
Estimation from the perfect samples of a signal in additive
noise is a classical topic [1]. However, estimation of noise-
affected bandlimited signals with single-bit quantization has
been rarely addressed. Sampling of continuous signals using
a random process as a dither has been studied by Masry [2],
where consistent estimates for a continuous signal are derived
from the single-bit quantized samples. Recovery of finite sup-
port signals from single-bit quantized samples has been stud-
ied by Wang and Ishwar [3], and Masry and Ishwar [4].

Let N be the oversampling rate above the Nyquist rate.
Loosely speaking, a bandlimited signal of duration T and
bandwidth π has 2πT degrees of freedom [5]. With NT sam-
ples of a noisy signal in duration T , the optimal distortion
with unquantized samples is speculated to be O(1/N).1 In
this work it is shown that a distortion of O(1/N) is achievable
while sensing with single-bit quantizers. Masry’s estimation
technique, when applied to bandlimited signals, results in a
(mean-squared error) distortion of O(1/N2/3).

Our main contribution is the design of a sampling scheme
with single-bit quantizers and oversampling rate N , to
achieve a distortion of O(1/N) for bounded dynamic-range
bandlimited signals in additive independent Gaussian noise.

Notation: The set of bounded signals and the set of finite
energy signals will be denoted by L∞(R) and L2(R), respec-
tively. The signal of interest will be denoted by g(t). For a
signal s(t) in L2(R) the Fourier transform will be denoted by
s̃(ω), and is defined as s̃(ω) =

∫
R s(t) exp(−jωt)dt. 1(x ∈

A) denotes the indicator function of a set A. The set of reals,
set of integers, convolution, and expectation operator will be
denoted by R, Z, ?, and E, respectively.

Organization: The mathematical formulation of our sam-
pling problem is discussed in Sec. 2. Short review of stable
interpolation kernels and smoothness properties of associated
signals are discussed in Sec. 3. The details of single-bit sam-
pling appear in Sec. 4. Conclusions are presented in Sec. 5.

1A single bounded constant in additive independent Gaussian noise with
N independent readings can be estimated up to a distortion of O(1/N) [6].
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2. PROBLEM SETUP

A bandlimited kernel for stable interpolation is as follows (see
Fig. 1). For λ > 1 and a = (λ− 1)/2, consider

φ(t) =
1

πat2
sin((π + a)t) sin(at); φ(0) = 1 +

a

π
. (1)

The kernel decreases as 1/t2 and therefore it is absolutely and
square integrable. This kernel defines the set of Zakai class of

1

−λπ λπ−π π

φ̃(ω)

ω

Fig. 1. Stable interpolation filter: The kernel φ(t) ↔ φ̃(ω) is
defined in (1); this kernel will be used to define bandlimited signals.

bandlimited signals [7]. Bounded bandlimited signals, which
form a subset of the Zakai class, are of interest for sampling:

BLint := {g : |g(t)| ≤ 1, g(t) ? φ(t) = g(t) ∀t ∈ R}. (2)

Any g(t) ∈ BLint is continuous everywhere. Any ban-
dlimited signal in L2(R) with Fourier spectrum zero out-
side [−π, π] also belongs to the set BLint. The set BLint
also includes (almost-surely) any sample path of a bounded-
dynamic range bandlimited stationary process [8]. The esti-
mation of bandlimited signals in BLint, affected by additive
independent Gaussian noise and single-bit quantization, will
be studied. The derived results are applicable to finite energy
bounded bandlimited signals as well as (almost-surely) to all
sample paths of a bounded stationary bandlimited process.

The signal affected by additive noise, g(t) + W (t), is
available for sampling. It is assumed that W (t1),W (t2), . . . ,
W (tn) for distinct t1, t2, . . . , tn ∈ R are i.i.d. with N (0, σ2)
distribution. The sampling rate of g(t) for perfect reconstruc-
tion is one sample/second. The reconstruction based on noisy
samples of g(t) will have distortion that can be reduced by
oversampling with a factor of N above Nyquist. For any
estimate Ĝrec(t) of the signal g(t), the maximum pointwise
mean-squared error Drec is defined as the distortion, i.e.,

Drec := sup
t∈R

Drec(t) = sup
t∈R

E
∣∣∣Ĝrec(t)− g(t)

∣∣∣
2

. (3)

The dependence of Drec on N is of interest. It will be shown
that Drec decreases as O(1/N) with single-bit quantizers.

Samples are quantized using single-bit ADCs as shown in
Fig. 2. The role of extra dither noise Wd(t) will be explained
later in the following sections. The estimator Ĝ1-bit(t) will be
designed and its distortion performance will be analyzed.

τ = 1/(λN)

τ
{X(nτ)}

1(x ≥ 0) estimator
Ĝ1-bit(t)

+
g(t)

W (t) Wd(t)

+

Fig. 2. The estimator works with poorest precision (one-bit) sam-
ples {X(nτ), n ∈ Z} where X(nτ) = 1(Y (nτ) ≥ 0).

It should be noted that the kernel φ(t) and its derivative
φ′(t) are absolutely integrable. These properties of φ(t) are
easy to derive and feature in the distortion results:

Cφ :=
∫

t∈R
|φ(t)|dt < ∞, (4)

C ′φ := sup
{tk:tk∈[k/λ,(k+1)/λ],k∈Z}

∑

k∈Z
|φ′(tk)| < ∞, (5)

and C ′′φ := sup
t∈R

∑

k∈Z

∣∣∣∣φ
(

t− k

λ

)∣∣∣∣
2

< ∞. (6)

3. MATHEMATICAL BACKGROUND

From the interpolation formula for Zakai sense bandlimited
signals, the signal of interest g(t) can be perfectly recon-
structed from its samples taken on a discrete grid. For g(t) ∈
BLint, the interpolation formula is given by [9, Lemma 3.1],

g(t) = λ
∑

n∈Z
g

(n

λ

)
φ

(
t− n

λ

)
. (7)

where λ > 1 is arbitrary and the equality holds in L∞(R). It
is sufficient to sample g(t) at a rate of λ samples/second. The
reconstruction in (7) is stable in L∞(R) to bounded perturba-
tions of samples.

The dither Wd(t) in Fig. 2 will now be explained. Due
to quantization, minimum risk estimators such as maximum
likelihood are non-linear and analytically complex. An an-
alytically tractable reconstruction procedure with O(1/N) is
desirable and dithering achieves it. Assume that Wd(t) and
W (t) are independent. The block-diagram for sampling with
one-bit ADCs is illustrated in Fig. 2. The condition on σ2 =
var(W (t) + Wd(t)) is stated using the cumulative distribu-
tion function (cdf) of W +Wd. Let F (x) and f(x) be the cdf
and probability density functions of W (t) + Wd(t). Denote
f(±Cφ) = δ and f(0) = ∆. Observe that ∆ > δ. For our
estimation procedure (see Sec. 4), it is required that there is a
parameter µ > 0 such that

(
1− 1√

2C2
φ

)
1
δ

< µ <
1
∆

, (8)

where Cφ is the constant in (4). First fix a λ > 1. Then,
Cφ =

∫
t∈R |φ(t)|dt >

∫
t∈R φ(t)dt = φ̃(0) = 1. That is,
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C2
φ

√
2 > 1. Therefore, the lower bound on µ in (8) is positive.

Next, observe that for a fixed large σ, δ = f(Cφ) ≈ f(0) =
∆. Then δ and ∆ are close enough and the inequality in (8)
can be satisfied. That is, for a fixed (λ,Cφ), there is a finite
number σ0 for which (8) is satisfied for all σ > σ0. To ensure
var(W+Wd) ≥ σ2

0 , select var(Wd) = max{0, σ2
0−var(W )}.

If var(W (t)) ≥ σ2
0 , then the extra dither is not needed.

For our estimation setup, the signal F (g(t))−1/2 will be
used, where F (x) is the cdf of W +Wd. The probability den-
sity f(x) = F ′(x) is finite and non-zero for x ∈ [−1, 1]. Let
l(t) := F (g(t))− 1/2. Then |l(t)| ≤ |F (1)| − 1/2, i.e., l(t)
is bounded. Finally |l′(t)| = |F ′(g(t))g′(t)| ≤ |F ′(0)2π2|
since F ′(0) maximizes F ′(x) in [−1, 1] and |g′(t)| ≤ 2π2

(see [9, Proposition 3.1]).
The definition of BLint involves convolution with a sta-

ble kernel and convolution will often appear in the context of
error analysis. The following fact will be useful.

Fact 3.1 Let p(t) be a signal such that ||p||∞ < ∞ and P (t)
be a random process such that supt∈R E(P 2(t)) < ∞. Then,

||p ? φ||∞ ≤ Cφ||p||∞, (9)

and E[(|P (t)| ? |φ(t)|)2] ≤ C2
φ sup

t∈R
E(P 2(t)). (10)

See [10] for a proof, which uses triangle inequality. The con-
volutions are well defined since φ(t) is absolutely integrable.
The quantization analysis will now be presented.

4. ESTIMATION FROM SINGLE-BIT SAMPLES

Now a Ĝ1-bit(t) will be obtained such that D1-bit scales as
O(1/N) (see Fig. 2). By dithering or otherwise, it will be
assumed that σ is such that (8) is satisfied. Fix τ = 1/(Nλ),
where N > 0 is an integer. The following interpolation is
obtained from the single-bit samples X(nτ) := 1(g(nτ) +
W (nτ) ≥ 0), n ∈ Z,

HN (t) = τ
∑

n∈Z
(X(nτ)− 1/2)φ (t− nτ) . (11)

Then HN (t) converges to a mean-square limit.

Proposition 4.1 (Convergence of single-bit interpolation)
Let l(t) = (F (g(t))− 1/2) and HN (t) be as in (11). Then

sup
t∈R

E(HN (t)− l(t) ? φ(t))2 ≤ C2

N
+

C3

N2
, (12)

where C2 > 0 and C3 > 0 are constants independent of N .

See [10, Sec. VI-B] for a proof. An approximation of g(t)
has to be obtained from HN (t). The signal l(t) ∈ L∞(R) and
the limit l(t) ? φ(t) is a lowpass version of l(t). The depen-
dence of l(t) ? φ(t) on g(t) is non-linear due to quantization,
which results in the F (g(t)) term. The signal g(t) is Zakai
sense bandlimited with one degree of freedom per unit time.

The degree of freedom per unit time of l(t) ? φ(t) is up to
one, and F (x) is increasing. We will show that it is possible
to invert l(t) ? φ(t) and find g(t), in spite of non-linearity.

A compandor is a monotonic function Q(x) which has
the property that Q(m(t)) ∈ L2(R) if m(t) ∈ L2(R). Lan-
dau and Miranker have shown that if g(t) ∈ L2(R) and g̃(ω)
is zero outside [−π, π], and if Q : [−1, 1] → R is a compan-
dor with non-zero slope, then there is one to one correspon-
dence between g(t) and Q(g(t))? sinc(t) [11]. Further, given
any signal m(t) ∈ L2(R) and m̃(ω) zero outside [−π, π],
there exists a unique gm(t) ∈ L2(R) with g̃m(ω) zero out-
side [−π, π] and Q(gm(t)) ? sinc(t) = m(t).

Our setup is similar where l(t) = F (g(t))−1/2 is a com-
pandor. But HN (t) and l(t) need not be in L2(R). Thus,
the procedure of Landau and Miranker does not extend to our
setup, especially in the presence of statistical noise. Modifi-
cations of their approach will be used to show that l(t) ? φ(t)
can be inverted to obtain g(t), when g(t) ∈ BLint. This non-
linear inversion problem will be cast into a recursive setup,
where Banach’s fixed-point theorem can be leveraged [12].

A ‘clip to one’ function Clip[x] is defined first.

Clip[x] = x if |x| ≤ 1, Clip[x] = sgn(x) otherwise. (13)

Since |g(t)| ≤ 1, it will be unaffected by clipping. Let ψ(t) =
φ(λt). Then ψ̃(ω) = φ(ω/λ). Thus, ψ̃(ω) is flat in [−λπ, λπ]
and in±[λπ, λ2π] decreases linearly to zero. Consider the set

SBL,bdd = {m : |m(t)| ≤ Cφ, m(t) ? ψ(t) = m(t)}. (14)

Then, we have the following Lemma.

Lemma 4.1 (SBL,bdd is a complete metric space) Let SBL,bdd
be as defined in (14). Then (SBL,bdd, ||.||∞) is a complete
subset of (L∞(R), ||.||∞).

Completeness is the non-trivial part of the above lemma. Con-
sider any sequence mn(t) ∈ SBL,bdd ⊂ L∞(R) converg-
ing to s(t). Such s(t) exists in L∞(R), because latter is
complete. By Lemma 3.1, mn(t) ? ψ(t) will converge to
s(t)?ψ(t). Since mn?ψ ≡ mn, therefore, s(t) = s(t)?ψ(t),
or s(t) ∈ SBL,bdd. Thus, SBL,bdd is complete.

A map T : SBL,bdd −→ SBL,bdd will be used to define a
recursion for obtaining g(t) from h(t) := l(t) ? φ(t). Define

r(t) := µh(t) + [m(t)− µ(F (m(t))− 1/2)] ? φ(t),
T [m(t)] := Clip [r(t)] ? φ(t). (15)

Since ||Clip [r(t)] ||∞ ≤ 1, Fact 3.1 ensures that T [m(t)] is
bounded by Cφ. Also φ(t)?ψ(t) = φ(t), therefore, T [m(t)]?
ψ(t) = T [m(t)]. Next, the following lemma is noted.

Lemma 4.2 (T is a contraction) Let (SBL,bdd, ||.||∞) be the
metric space as defined in (14). Let T : SBL,bdd −→ SBL,bdd
be a map as defined in (15). If the condition in (8) is satisfied,
then there is a choice of µ such that T is a contraction, i.e.,

||T [m1]− T [m2]||∞ ≤ α||m1 −m2||∞, (16)
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for some 0 < α < 1 and any m1(t),m2(t) ∈ SBL,bdd. The
parameter α does not depend on the choice of m1 and m2.

See [10, Sec. VI-C] for a proof, which uses (8) and calcu-
lus. The key point of Lemma 4.2 is that the map T will always
carry a signal in SBL,bdd towards its fixed point solution. This
follows by Banach’s fixed-point theorem which is formalized
in Proposition 4.2. Now the key recursive equation will be
stated. To invert h(t) = l(t) ? φ(t) and obtain g(t) define

rk+1(t) := µh(t) + [gk(t)− µ(F (gk(t))− 1/2)] ? φ(t),
gk+1(t) := T [gk(t)] = Clip[rk(t)] ? φ(t), (17)

where k ≥ 0, k ∈ Z and µ > 0 is a constant that will be
chosen according to Lemma 4.2. Set g0(t) ≡ 0. By substitu-
tion the signal g(t) is a fixed point of (17). By using Banach’s
fixed point theorem [12], the following proposition shows that
g(t) is the only fixed point of the equation in (17).

Proposition 4.2 (g(t) is the fixed point of T ) Let g(t) ∈
BLint ⊂ SBL,bdd be a continuous bounded bandlimited sig-
nal. Let h(t) = l(t) ? φ(t), where l(t) = F (g(t)) − 1/2.
Consider the recursion gk(t) = T [gk−1(t)], where T is as
defined in (15). Set g0(t) ≡ 0. If µ is selected as in (8), then

lim
k→∞

||gk − g||∞ = 0. (18)

Proof: Define d(m1,m2) = ||m1 − m2||∞ for signals
m1(t),m2(t). From Lemma 4.1, note that (SBL,bdd, d) is
a complete metric space. The signal g(t) is in SBL,bdd and it
is a fixed point for T defined in (15), i.e., g(t) = T [g(t)].

Pick µ as in (8). Then T is a contraction on (SBL,bdd, d).
Thus, by Banach’s fixed point theorem [12, Ch. 5], there is
exactly one fixed point in SBL,bdd for the equation g(t) =
T [g(t)]. Since gk(t) converges to a fixed point, it must con-
verge to g(t) in the distance metric d. ♣

The estimation of signal from HN (t), the statistical ap-
proximation of l(t) ? φ(t), will be discussed now. Let Gk(t)
be the sequence of waveforms generated from HN (t) when
the latter is subjected to the recursion in (17). Fix G0(t) ≡ 0
and define

Rk+1(t) := µHN (t) + [Gk(t)− µ(F (Gk(t))− 1/2)] ? φ(t),
Gk+1(t) := T [Gk(t)] = Clip[Rk(t)] ? φ(t). (19)

Let Ĝ1-bit(t) = limk→∞Gk(t). For the same choice of µ
which ensures that T is a contraction on (SBL,bdd, ||.||∞), the
distortion of |Ĝ1-bit(t) − g(t)| has to be established. To this
end, the following main result of this work is noted.

Theorem 4.1 Let HN (t) be the estimate of l(t) as described
in (11) and µ be selected as in (8). With G0(t) ≡ 0, let Gk(t)
be the sequence of random waveforms as defined in (19). De-
fine limk→∞Gk(t) = Ĝ1-bit(t). Then,

D1-bit := sup
t∈R

E(Ĝ1-bit(t)− g(t))2 = O(1/N),

i.e., the distortion D1-bit decreases as O(1/N).

Proof: See [10, Sec. VI-D]. ♣
The key idea of the proof is highlighted. From Lemma 4.2,

if l(t)?φ(t) is the starting point of recursion in (17), then g(t)
is where it ends. However, from Proposition 4.1, we know
that HN (t) ∈ SBL,bdd is available for estimating g(t). Then
HN (t) is subjected to the recursion in (19). Since HN (t) and
l(t) are ‘close’ (variance O(1/N)), successive application of
the map T results in signal estimate Ĝ1-bit and g(t) being
close (variance O(1/N)). The contraction property of T is
the key to this result.
Interpretation using degree of freedoms: Assume that a con-
stant c ∈ [−1, 1] has to be estimated based on N noisy
single-bit readings Bi = 1(c + Wi ≥ 0), 1 ≤ i ≤ N .
The random variables {Bi, 1 ≤ i ≤ N} are i.i.d. Ber(q)
where q = P(W ≥ −c) = P(W ≤ c) = F (c). Denote
B̂N = (

∑N
i=1 Bi)/N . Define Ĉ1-bit = F−1(B̂N ) if B̂N ∈

[F (−1), F (1)] and Ĉ1-bit = ±1 otherwise. Since F (x) is in-
vertible and dF−1(x)/dx is bounded for x ∈ [F (−1), F (1)],
therefore, using the delta method, Ĉ1-bit obtained from B̂N

has a mean-squared error which decreases as (1/N) [6].
Since bandlimited signals have one degree of freedom in ev-
ery Nyquist interval, an oversampling factor of N means that
there are N samples to observe each degree of freedom.

5. CONCLUSIONS AND FUTURE WORK

The sampling, quantization, and estimation of a bounded
dynamic-range bandlimited signal affected by additive inde-
pendent Gaussian noise was studied. The maximum point-
wise expected mean-squared error was used as a distortion
metric. With single-bit measurements, it was shown that the
distortion scales as O(1/N), where N is the oversampling
ratio with respect to the Nyquist rate. This improved the
(best known) quantization results by Masry for quantizing
bandlimited signals in noise from O(1/N2/3). This improve-
ment was obtained by exploiting the structure of bandlimited
signals in the estimation step. The presented estimation tech-
nique hinges upon Banach’s fixed point theorem.

This work assumed sufficient dithering by noise because
the estimators were linear. It is of interest to look towards
estimation techniques which do not require extra dithering.
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