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ABSTRACT

Lattice Vector Quantization (LVQ) is an interesting tool in
source coding which can take advantage of a higher dimension than
the scalar case while overcoming complexity limitations of con-
ventional vector quantization. However, the high dimension and
the relatively complex indexing of the codebooks make LVQ often
unsuitable for getting a successive refinement of the source. For
addressing this problem, the paper proposes a new class of LVQ
called the embedded Voronoi codes. The new codes can gradually
describe the source with a granularity of 1 bit/dimension by prop-
erly combining differently scaled Voronoi codes. A rate-distortion
evaluation for a Gaussian source shows that the embedding of the
codes comes at a minimal cost at low bit-rates while preserving LVQ
advantages over scalar quantization.

Index Terms— Lattice Vector Quantization, Embedded Quan-
tization

1. INTRODUCTION

Lattice Vector Quantization (LVQ) is a powerful tool in source cod-
ing as it inherits advantages over scalar Quantization (SQ) from Vec-
tor Quantization (VQ) while being less complex than conventional
stochastic VQ. In LVQ, the codebook is defined as a finite subset of
a regular point lattice. Due to the highly regular structure of lattices,
the search and indexing of the nearest neighbor within the codebook
can be algebraic. In this way, codebooks require no or almost no
training and storage, and the computational complexity is limited.
LVQ can therefore exploit higher dimensions and codebook sizes
than the stochastic VQ allows in practical usages. LVQ was suc-
cessfully adopted in image coding [1, 2, 3, 4] as well as in audio
coding [5, 6].

Embedded Quantization is used for obtaining a successive re-
finement of the source information and finds applications in progres-
sive transmission of the coded data. In the scalar case, embedded
quantizers can be obtained easily by using the bit-plane coding prin-
ciple. Such a coding is used in the image coding schemes EZW [7]
and SPIHT [8], but also in audio coding [9, 10]. In the vector case,
and moreover for LVQ, the problem is more complex. A solution
for designing a successive refinement LVQ was already proposed
in [11]. The method defines a constraint in the design of a LVQ
which ensures to obtain an optimal successive refinement. However,
the method requires the computation of specific geometric shapes
and the design of singular entropy codes for each desired codebook.
In that sense, the method is complex and cannot be easily applied for
any lattices and dimensions.

Part of the work was performed at the University of Sherbrooke, Canada

The aim of this work is to define and study the properties of
a new class of successive refinement LVQ, which is generic to any
lattices. The new embedded quantization called embedded Voronoi
codes exploits the remarkable properties of the Voronoi codes by
decomposing a point of the lattice in a multitude of Voronoi codes
scaled at the powers of 2. The bitstream is then suitable for a pro-
gressive transmission with a granularity as fine as 1 bit/dimension.
Similar codes were used in a scalable audio coding scheme [12].
The present paper defines the codes more accurately and introduces
their properties. Further, a theoretical evaluation in terms of rate-
distortion is presented for a memoryless Gaussian source. The per-
formance of the embedded Voronoi codes is compared to conven-
tional bit-plane coding and Voronoi codes.

The paper is organized as follows: in the two first sections, some
background about LVQ and embedded quantization is given. The
new embedded quantization is introduced in section 4, followed by
a results section evaluating its performance. The paper ends with a
conclusion and a section dedicated to positioning the presented study
in relation to prior work.

2. LATTICE VQ

2.1. Definition

A lattice Λ in N -dimensional space <N , is defined as a set of points
obtained by an integer combination of a linearly independent set of
vectors {v1, v2, . . . , vn}:

Λ = {y|y =

N∑
i=1

kivi|ki ∈ Z, vi ∈ <N ,∀i = 1, 2, . . . , N} (1)

Each point y of the lattice Λ is associated with a Voronoi region. The
Voronoi region gathers all the points in <N closer to y than to any
other points of the lattice.

Ω(Λ, y) = {x ∈ <N |‖x− y‖2 ≤ ‖x− z‖2, ∀z ∈ Λ}, y ∈ Λ (2)

Due to the regular structure of lattices, all Voronoi regions in a lattice
are simple translations of the zero-centered Voronoi region Ω0(Λ),
which can be expressed by:

Ω0(Λ) = Ω(Λ, y)− y,∀y ∈ Λ (3)

This means that the Voronoi regions around lattice points are con-
gruent polytopes, and form a regular tessellation partitioning of the
infinite space <N . The lattices can be ranked by their space filling
advantage over the lattice ZN representing the partition of a uniform
scalar quantization [13]. The space filling is given by the normalized
second moment of Voronoi region. According to this criterion, the
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hexagonal lattice A2 is optimal for dimension 2 and will be used in
the following for illustration purposes. For dimension 8, the Gosset
lattice RE8 is optimal and is adopted for evaluating the performance
of the proposed successive refinement LVQ in the results section.

2.2. Voronoi codes

The Lattice Vector Quantization (LVQ) is a vector quantization
whose codebook is a subset of an infinite lattice Λ. A codebook C
of a LVQ can be defined as an intersection of a lattice Λ and a shape
of support S.

C = Λ ∩ S (4)

The points outside the shape of support are rejected from the code-
book. The lattice shaping is of major importance for the perfor-
mance of the resulting LVQ. To get an optimal quantization the lat-
tice should be shaped by a contour of constant probability density
of the source [14]. For memoryless uniform, Gaussian, and Lapla-
cian distributions the iso-probability contours are an N -cube, an N -
sphere, and an N -octahedron, respectively.

The Voronoi codes introduced by Conway and Sloane [15] are
a convenient way of shaping and at the same time indexing an LVQ
codebook. The Voronoi codes are generated by shaping the lattice Λ
by an integer multiple m of the Voronoi region of the same lattice Λ
translated by a fixed vector a:

V (Λ,mΛ, a) = Λ ∩ (Ω0(mΛ) + a) (5)

a is a translation offset in <N that ensures that no point of Λ falls
on the boundary of Ω0(mΛ) + a. An illustration of the Voronoi
code is in A2 given in Fig. 1. The code size of V (Λ,mΛ, a) is mN

and can be indexed by efficient algorithms [15]. Usually, m is a
power of 2 which leads to codebooks needing a rate of integer bits.
However, the Voronoi codes’ truncation is not always optimized for
the source distribution. The Voronoi region is close to an N -sphere,
especially for high dimensions, and can be considered quasi-optimal
for a memoryless Gaussian source.

Ω
0
 (Λ)

Ω
0
(mΛ)+a

Fig. 1. Codebook defined by the Voronoi code V (A2, 5A2, 0.25).

3. EMBEDDED QUANTIZATION

3.1. Definition

An embedded quantization can be defined as a set of K approx-
imating functions x → Qk[x], k ∈ {0, ..,K − 1}, where each

Qk[x] refines the representation of x given by previous approxima-
tion Qk−1[x]. Embedded quantization allows to produce a scalable
bitstream, in which decoding a subset of the coded data is sufficient
for getting an approximation of x from Qk[x]. This approximation
is coarser than the approximation given by QK−1 which can be ob-
tained by decoding the entire coded data. The representation of the
source is then sent in multiple stages, where in the k-th stage the
information difference between Qk[x] and Qk−1[x] is transmitted.

3.2. Bit-plane coding

Uniform scalar quantization is well suited for getting an embedded
quantization. It is usually achieved by decomposing N successive
scalar quantized values into binary format. A bit-plane is formed
by gathering the N bits having the same weight in the binary rep-
resentations. The number K of bit-planes needed for describing the
N -dimensional vector y of the quantized values is given by:

K = log2( max
n∈{0,...,N}

(abs(yn)) + 1) (6)

The number K also needs to be transmitted for every vector and
can be entropy coded. In case K > 0, the sign of each element
of y is transmitted followed by the K bit planes sent sequentially
from the most significant to the least significant bit-plane. Starting
from the least significant bits, the bitstream can be truncated with a
granularity of 1 bit and decoded with a coarser approximation.

4. EMBEDDED VORONOI CODES

In this study we define a new embedded quantization called embed-
ded Voronoi codes based on LVQ and particularly the Voronoi codes.
This section gives its definition and properties.

4.1. Definition

The embedded Voronoi codes C(r) of order r in the lattice Λ are
defined as a sum of r Voronoi codes V (Λ, 2Λ, ai), i ∈ {0 . . . r}
scaled by factors 2i:

C(r) = 2rV (Λ, 2Λ, ar)+. . .+2V (Λ, 2Λ, a1)+V (Λ, 2Λ, a0) (7)

C(r) forms a family of codebooks in Λ of size 2N(r+1). It can
be easily shown that C(r) are subsets of Λ. This is deduced from the
self-similarity property of lattices which can be summarized by the
following formula [16]:

Λ = mΛ + V (Λ,mΛ, a) =
⋃

c∈Λ,v∈V (Λ,mΛ,a)

mc + v (8)

C(r) requires a bit-rate of r + 1 bits per dimension and can
achieve a multi-rate quantization with a resolution of 1 bit per di-
mension. The minimal order r to use for coding a point y of the lat-
tice Λ can be found by iteratively searching for y ∈ C(r). Moreover,
the embedded Voronoi codes are suitable for a successive refinement
as it decomposes y into r + 1 vectors:

y =

r∑
i=0

2ivi (9)

where vi are codevectors issued from the Voronoi codes V (Λ, 2Λ, ai)
and each of them can be coded on N bits. The first codevector
2rvr represents the coarsest approximation of y and can be ob-
tained by decoding the first N bits. The following codevectors
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(a) Voronoi codes (b) Embedded Voronoi codes (ai = a,∀i) (c) Embedded Voronoi codes such as (11)

Fig. 3. 4 bits codebooks issued from Voronoi codes and embedded Voronoi codes .

(0,0)

v0

2v1

2
2
v2

y

Fig. 2. Decomposition of a lattice point y from A2 by an embedded
Voronoi code of order 2.

2ivi,∀i ∈ {r − 1 . . . 0} are the successive refinements. The ap-
proximation of y can be refined r times by decoding each time N
additional bits, i.e. with a decoding granularity of 1 bit per dimen-
sion. Fig. 2 illustrates the decomposition in the lattice A2 obtained
by an embedded Voronoi code of order 2.

In the next subsections we will underline some important prop-
erties of the embedded Voronoi codes which are often inherited or
induced from the Voronoi codes.

4.2. Source mismatch

The embedded Voronoi code of order r is not systematically con-
tained in the Voronoi region scaled by the factor 2(r). This property
illustrated for the case of lattice A2 in Fig. 3 is an important aspect
regarding the performance of the new embedded quantization. In-
deed, the scaled Voronoi region is a quasi-optimal shape of support
for LVQ in case of a memoryless Gaussian, especially at higher di-
mension. The divergence of the codebook shape of C(r) from the
Voronoi region will consequently penalize the performance of the
quantization for such a source. This is the price that must be paid
for embedding the code compared to a single stage Voronoi code
V (Λ, 2rΛ, a).

4.3. Centroid of the code

Given that for most of the source distributions the origin is the opti-
mal centroid, it is important to know and control the centroid of C(r).
In the specific case where the different Voronoi codes V (Λ, 2Λ, ai)

involved in C(r) use the same offset a, the centroid E(Cr) will drift

away from the origin as it can be observed in Fig. 3 (b). The centroid
of such codebooks can then be expressed as:

E(C(r)) = (2(r) + 2(r−1) + . . . + 1))E(V (Λ, 2Λ, a))

= (2r+1 − 1)E(V (Λ, 2Λ, a))
(10)

where E(V (Λ, 2Λ, a)) is a non-null centroid of V (Λ, 2Λ, a).
For avoiding such a drift, we propose to constrain the offsets ai

Vi(Λ, 2Λ) such that:{
ar = a

ar−1 = · · · = a0 = −a
(11)

Under such a condition the centroid of Cr comes (2r+1 − 1) times
closer to the origin and is equal to E(V (Λ, 2Λ), a). In this manner
the centroid of the embedded Voronoi code is of the same order as
the Voronoi codes as shown in Fig. 3 (c).

4.4. Decoding of an approximation

The distortion caused by the embedded Voronoi codes is equal to the
granular distortion of lattice Λ if the bitstream is fully decoded. In
case of truncation of the bitstream, the distortion increases but can be
limited at the decoder side by adjusting the decoded approximation.
The necessity of such an adjustment comes from the fact that the
scaled Voronoi region used for generating the Voronoi codes in (5)
is not entirely covered and defined by the different Voronoi regions
of the generated codes. That means that most of the time we have
the following inequality:

Ω0(mΛ) 6=
⋃

c∈V (Λ,mΛ)

Ω0(Λ) + c (12)

As a direct consequence for the embedded Voronoi codes, a subset
of the decomposition y′ = vr + . . . + vl is necessarily the best rep-
resentative of the reachable codes in Cr . For getting an optimal ap-
proximation, an adjustment has to be computed at the decoder side.
In case Cr fulfilled the condition (11), the decoded approximation
then can be expressed as follows:{

y if R = N(r + 1)∑l
i=r 2ivi − (2l − 1)E(V (Λ, 2Λ), a) if R < N(r + 1)

(13)

where R ∈ {0, . . . , N(r + 1)} is the number of bits considered for
decoding an approximation of y and l is the number of subvectors
dropped from the decomposition of y by the decoder and is given by
l = r + 1− bR

N
c.
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(a) Performance for fixed bit-rates
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(b) Performance for scalable bit-rates

Fig. 4. Rate-distortion evaluation of the embedded Voronoi codes.

5. RESULTS

To evaluate the coding performance of the embedded Voronoi codes,
we consider a zero-mean and unity variance i.i.d. Gaussian random
process. The embedded Voronoi codes are applied at dimension 8
in the lattice RE8. The Signal to Noise Ratio (SNR) is computed
at different rates. The different rates are obtained by tuning a global
gain g which is applied to the signal before quantization. The in-
version gain 1/g is applied at the end of the decoding process. The
higher g is, the lower is the distortion and the higher is the rate R.
The performance of the embedded Voronoi codes is compared to:

• The theoretical limit of Shannon of SNR: 20R log10 2 ≈
6.02R

• The Voronoi codes in RE8

• The bit plane coding used after a uniform scalar quantization.

An ideal entropy coding was used to transmit the order r of the em-
bedded Voronoi codes, the factor m of Voronoi codes and the num-
ber K of bit-planes.

In Fig. 4 (a), the SNR is measured at different rates when en-
coding and decoding are done at the same fixed-rates. When com-
paring to the conventional Voronoi codes, it can be seen that the em-
bedding property of the embedded Voronoi codes comes at a small
cost of performance at low bit-rates. This penalty was explained in
subsection 4.2. However, the embedded Voronoi codes still keep
the advantages of LVQ over a uniform SQ. At high bitrates, e.g. 7
bits per dimension and more, the embedded Voromoi codes show
higher performance degradation and the advantage over the uniform
SQ vanishes.

In Fig. 4 (b), the performance in case of progressive transmis-
sion is evaluated. This was achieved by generating a single scalable
bitstream at a rate of 7 bits/sample and by truncating it in order to
reach different decoded bit-rates. Only the bit-plane coding and the
embedded Voronoi codes can produce a scalable bitstream. It can
be seen that the embedded Voronoi codes perform significantly bet-
ter than the bit-plane coding. This is partly due to the adjustment
defined in subsection 4.4 and used at the decoder side by the embed-
ded Voronoi codes. One can also observe an oscillation of the SNR
curves. The period of the oscillation corresponds to 1 bit/sample,
which shows that an optimal truncation is obtained when an integer

number of bits per sample is removed from the bitstream. In this
case, the same number of bits is dropped from all transmitted values,
which induces a better quantization of the signal.

6. CONCLUSION

Embedded Voronoi codes allow a successive refinement of the
source while maintaining the advantages of the LVQ over the uni-
form SQ. The definition of the embedded Voronoi codes is generic
and can be applied to any lattices. The cost of the embedding prop-
erty is a suboptimal codebook shape which can lead to a certain
mismatch with the source distribution especially at high bit-rates.
Finally, the embedded Voronoi codes can also be applied for the
scalar case, and can be used as a bit-plane coding extension for
higher dimension.

As a future work, one can study the performance of the em-
bedded Voronoi codes in conjuction with an entropy coding of the
successive refinements. Such an association has been already done
for the bit-plane coding [17]. It can also be interesting to study fur-
ther the combination of the embedded Voronoi codes with advanced
multi-rate LVQ techniques like the one described in [5] for exploring
the reachable tradeoffs between adaptation to the source and bitrate
scalability.

7. RELATION TO PRIOR WORK

The presented embedded Voronoi codes are mainly based on the
Voronoi codes introduced in [15]. A previous work addressed the
same problem in [11], but used a different approach. The authors
defined a hard constraint for obtaining a successive refinement with-
out or with minimal loss of optimality in terms of rate-distortion.
The obtained solution requires designing each embedded quantizer
individually. The solution cannot be applied easily to any dimen-
sions and lattices. In this work, this constraint was relaxed, allowing
some loss of efficiency, but making the embedded Voronoi codes
more universal and generic. Similar codes were used in a scalable
audio coding scheme presented by the author of this paper in [12].
The present work builds on those results by providing accurate defi-
nitions and a theoretical analysis.
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