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ABSTRACT

Using coarse resolution analog-to-digital conversion (ADC)
offers the possibility to reduce the complexity of digital
receive systems but introduces a loss in effective signal-to-
noise ratio (SNR) when comparing to ideal receivers with
infinite resolution ADC. Therefore, here the problem of sig-
nal parameter estimation from a coarsely quantized receive
signal is considered. In order to increase the system perfor-
mance, we propose to adjust the analog radio front-end to
the quantization device in order to reduce the quantization-
loss. By optimizing the bandwidth of the analog filter with
respect to a weighted form of the Cramér-Rao lower bound
(CRLB), we show that for low SNR and a 1-bit hard-limiting
device it is possible to significantly reduce the quantization-
loss of initially -1.96 dB. As application, joint carrier-phase
and time-delay estimation for satellite-based positioning and
synchronization is discussed. Simulations of the maximum-
likelihood estimator (MLE) show that the optimum estimator
achieves the same quantization-loss reduction as predicted by
the performance bound of the optimized system.

Index Terms— analog-to-digital conversion, parameter
estimation, analog filtering, satellite navigation systems.

1. INTRODUCTION

Most state-of-the-art signal parameter estimation techniques
assume that the receiver (or sensing device) has access to
digital signals with arbitrary high precision. In practice this
implies the existence of analog-to-digital conversion (ADC)
with a resolution which is large enough to neglect the effect of
amplitude quantization. The push toward high-speed process-
ing and acquisition renders the assumption of having available
high-resolution ADC unrealistic or even invalid. In fact, fast
and high resolution ADC is expensive, power consuming and
therefore not appropriate for portable devices. Coarse reso-
lution ADC may be a cost and energy-effective solution for
such applications. In particular, 1-bit ADC meets the require-
ments for energy efficiency and allows to use a simple analog
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front-end. Coarse signal quantization introduces nonlinear ef-
fects which have to be taken into account in order to obtain
optimum system performance. Therefore, adapting existent
methods and developing new estimation algorithms, operat-
ing on quantized data, becomes more and more important.

An early work on the subject of estimating unknown pa-
rameters based on quantized signals can be found in [1]. In [2]
[3] [4] the authors studied channel parameter estimation based
on a single-bit quantizer assuming uncorrelated noise. The
problem of signal processing with low resolution has been
considered in another line of work concerned with data trans-
mission. It turns out that the well known reduction of low
SNR channel capacity by factor 2/π (−1.96 dB) due to 1-bit
quantization [5] holds also for the general MIMO case with
uncorrelated noise. On the other hand it was shown by [6],
that the channel capacity loss of the AWGN channel due to
1-bit quantization at the receiver can be reduced by oversam-
pling the analog receive signal. [7] observed the possibility
to improve the correlator output SNR of a quantized receiver
by using high sampling frequencies and reducing the receiver
bandwidth. Recently, [8] derived a lower bound on the ca-
pacity of quantized MIMO channels with noise correlations
showing that the loss can be lower than with white noise.

To the best of our knowledge, estimating multiple param-
eters from 1-bit quantized signals with colored noise is still
not covered by previous works. We provide new results on
the low SNR estimation performance under 1-bit quantization
and noise correlation. More precisely, we derive the Cramér-
Rao lower bound (CRLB) for the estimation performance in
the presence of temporally colored noise within the low SNR
regime, taking into account the effects of quantization. It is
observed, that the popular -1.96 dB loss [9] [10] is not valid
in the presence of noise correlation. In fact, the loss can be
smaller for certain favorable noise correlation. Therefore, we
present a new approach aiming at optimizing the analog front-
end to reduce the quantization-loss. Surprisingly, even adapt-
ing the bandwidth of the analog filter is sufficient to signifi-
cantly improve the performance of 1-bit receivers. Note that
such analog adjustments are highly attractive from the digi-
tal signal processing point of view as they do not require any
extra computational complexity during system operation.
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2. SYSTEM MODEL

For the discussion, we consider a band-limited receive signal
(one-sided bandwidth B) sampled at a rate of 1/Ts

y = s(θ) + n ∈ CN , (1)

where s(θ) ∈ CN is a signal of known structure modulated
through θ ∈ RK , the signal parameter that has to be esti-
mated. The vector n ∈ CN is additive Gaussian noise with
the covariance matrix entries

Rij = 2BN0 sinc (2BTs|i− j|) , (2)

where N0 is the spectral density of the noise.

2.1. Quantized Receivers

For quantized receivers, we define the signal

q = Q(y), (3)

where for simplicity Q(·) is an element-wise operation, indi-
vidually mapping each element yn ∈ C onto one point out of
a finite setQ ⊂ C. By the orthogonality principle [13, p.177]
the output q of a general quantizer can be approximated [8]

q = Gy + e = Gs(θ) +Gn+ e = s′(θ) + n′, (4)

where

G = E
[
qyH

]
E
[
yyH

]−1
= RqyR

−1
yy , (5)

and for scenarios with low SNR

R′ = E
[
n′n′H

]
≈ E

[
qqH

]
= Rqq. (6)

While (6) just specifies the second moment of the effective
noise probability density function, it can be shown that for the
discussed signal model, multivariate additive Gaussian noise
minimizes Fisher information (FI). Therefore, a nearly opti-
mum estimation is attained based on the distribution

p(q;θ) =
1

πN detR′
exp

[
−(q − s′(θ))HR′−1(q − s′(θ))

]
.

3. SIGNAL PARAMETER ESTIMATION

In the following the goal is to calculate an estimate θ̂(q) of the
signal parameter θ based on the quantized observation vector
q. We restrict the discussion to unbiased estimators, define
the conditional mean square error (MSE) matrix

Rεε(θ) = Eq|θ

[
(θ̂(q)− θ)(θ̂(q)− θ)T

]
, (7)

and use the weighted sum of the individual estimation errors

MSEW(θ) = tr (WRεε(θ)) (8)

as figure-of-merit whereW is a positive semi-definite matrix.
Without direct access to Rεε(θ) optimization of the receive
system can be carried out with respect to a lower bound

MSEW(θ) ≥ tr
(
WF−1q (θ)

)
. (9)

The matrix F q(θ) is the so called FI matrix [11] with the
property [12, p. 3]

Rεε(θ) � F−1q (θ) (10)

for a receiver using q bits of resolution. For the considered
signal model (4) the entries of F q(θ) are given by

F q,ij(θ) = 2 · Re

{
∂s′H(θ)

∂θi
R′−1

∂s′(θ)

∂θj

}
. (11)

4. 1-BIT HARD-LIMITING RECEIVER

For a hard-limiting ADC with 1-bit resolution the element-
wise quantization operation Q(·) is defined by

Q(x) = sign (Re {x}) + j sign (Im {x}). (12)

Fortunately, for this quantizer a low SNR gain-noise model
[8] can be specified using the arcsine-law [13, p. 438]

R′ =
2

π
arcsin

(
1

2BN0
R

)
G =

√
2

π

√
1

2BN0
I. (13)

If the noise covarianceR is a scaled identity matrix

F 1-bit,ij(θ) =
1

BN0
Re

{
∂sH(θ)

∂θi

(
arcsin (I)

)−1 ∂s(θ)

∂θj

}
=

2

π
F∞,ij(θ). (14)

This verifies the established result [9] [10] that 1-bit hard-
limiting quantization at low SNR leads to a loss of

10 log
( 2

π

)
= −1.96 dB (15)

in system performance when comparing to an ideal receive
system with ADC of infinite resolution.

5. SATELLITE-BASED POSITIONING

In order to visualize the possible performance improvements,
we use a GNSS signal parameter estimation scenario. Here
the analog receive signal is modeled by

y(t) = ejφ
√
Cx(t− τ) + n(t), (16)
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with φ being a carrier-phase shift, C the carrier power and τ
a time-delay. As satellite signal GPS L1 C/A (satellite 1) [14]
is used. For observation periods smaller than 20 ms [15]

x(t) =

+∞∑
k=−∞

bkh(t− kTc), (17)

with bk ∈ {−1, 1} being the k-th symbol of a periodic binary
sequence b with 1023 elements and chip-duration of Tc =
977.52 ns such that x(t) repeats after T0 = 1 ms. The pulse

h(t) =
1

π
√
Tc

[
Si

(
2πB

(
t+

Tc
2

))
− Si

(
2πB

(
t− Tc

2

))]
is the band-limited version of a rectangular pulse filtered with
an ideal low-pass filter with bandwidth B where by definition

Si(t) =

∫ t

0

sin(x)

x
dx. (18)

A discussion regarding quantized positioning with advanced
BOC pulse forms can be found in [16].

The GNSS signal spectrum can be written

X(ω) = B(ω)H(ω), (19)

with B(ω) being the discrete spectrum of the satellite se-
quence b and H(ω) the Fourier transform of the pulse h(t).
The sampled and quantized receive signal is

q = s′(θ) + n′ =

√
2

π

√
C

2BN0
ejφx(τ) + n′, (20)

with θ =
[
φ τ

]T
and xk(τ) = x(kTs − τ).

5.1. FI - Formulations and Asymptotic Analysis

For the considered estimation problem the diagonal elements
of the FI matrix F 1-bit(θ) are

F 1-bit,11 =
C

BN0
· xH(τ) arcsin

(
1

2BN0
R

)−1
x(τ)

F 1-bit,22 =
C

BN0
· ∂x

H(τ)

∂τ
arcsin

(
1

2BN0
R

)−1
∂x(τ)

∂τ
,

(21)

and the off-diagonal elements F 1-bit,12 and F 1-bit,21 vanish.
Under the assumption that the band-limited signal x(t) is pe-
riodic the sampled signal vector x(τ) can be written

x(τ) = DT (τ)x̃, (22)

whereD ∈ CN×N is a modified DFT matrix

Dni =
1√
N
ej 2π

(n−(N/2+1))(i−(N/2+1))
N , (23)

T (τ) ∈ CN×N a diagonal matrix with entries

T nn(τ) = e− j(n−(N/2+1))ω0τ , (24)

and x̃ the vector with the Fourier coefficients

x̃ =

[
X
(
− N

2
ω0

)
, . . . , X

((N
2
− 1
)
ω0

)]T
, (25)

with ω0 = 2π
T0

. For the signal derivative ∂x(τ)
∂τ such an ap-

proach allows to write

∂x(τ)

∂τ
= DT (τ)Ωx̃, (26)

with Ω ∈ CN×N being a diagonal matrix with entries

Ωnn = − jω0(n− (N/2 + 1)). (27)

Further, ifN is sufficiently large any covariance matrixR has
approximately the structure of a circulant Toeplitz matrix and
is therefore diagonalized

R ≈DΛDH , (28)

such that Λ ∈ RN×N forms a diagonal matrix with entries

Λnn =
1

T0
ψ
(

(n− (N/2 + 1))ω0

)
, (29)

whereψ(ω) is the power-spectral density of the random Gaus-
sian signal with covariance matrix R. For the information
measure related to the phase-rotation φ

F 1-bit,11 =
C

BN0
· xH(τ) arcsin

(
1

2BN0
R

)−1
x(τ)

≈ 2C · x̃HΛ−11-bitx̃

=
2C

T0

N
2 −1∑

n=−N
2

|X(nω0)|2

ψ1-bit(nω0)
= F1-bit,φ(B, Ts), (30)

with

ψ1-bit(ω) = 2BN0Ts

k=∞∑
k=−∞

arcsin (sinc (2BkTs)) e
− jωkTs .

(31)

Letting the time of one signal period go to infinity, T0 → ∞
the FI asymptotically becomes

F̄1-bit,φ ≈
C

π

∫ 2πB

−2πB

|X(ω)|2

ψ1-bit(ω)
dω. (32)

For the FI measure of the time-delay τ

F 1-bit,22 =
C

BN0
· ∂x

H(τ)

∂τ
arcsin

(
1

2BN0
R

)−1
∂x(τ)

∂τ

≈ 2C · x̃HΩHΛ−11-bitΩx̃

=
2C

T0

N
2 −1∑

n=−N
2

(nω0)2|X(nω0)|2

ψ1-bit(nω0)
= F1-bit,τ (B, Ts),

(33)
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with the asymptotic form

F̄1-bit,τ ≈
C

π

∫ 2πB

−2πB

ω2|X(ω)|2

ψ1-bit(ω)
dω. (34)

5.2. System Optimization - Bandwidth and Sampling

For system optimization we choose N = 2046, B = 1
Tc

,
Ts = Tc

2 and use an ideal system with infinite resolution as
reference in order to formulate a normalized version of (9)

NMSEW(ρ, µ) ≥ α · NMSEφ(ρ, µ) + (1− α) · NMSEτ (ρ, µ),
(35)

with

NMSEφ/τ (ρ, µ) =
F∞,φ/τ (B, Ts)

F1-bit,φ/τ (ρB, Ts

µ )
, (36)

where the bandwidth fraction satisfies 0 ≤ ρ ≤ 1 and the
oversampling factor µ ≥ 1. Note, that with infinite resolution

F∞,φ/τ (ρB,
Ts
µ

) ≤ F∞,φ/τ (B, Ts) (37)

for ρ ≤ 1, µ ≥ 1 which does not hold for the 1-bit case. In
fact, Fig. 1 visualizes the individual quantization-loss

χφ/τ (ρ, µ) = −10 log NMSEφ/τ (ρ, µ) (38)

with respect to the bandwidth ρ. Without oversampling, i.e.

0.6 0.7 0.8 0.9 1
−3.5
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−2.5

−2

−1.5

−1

ρ

χ
in

dB

χφ(ρ, 1)

χφ(ρ, 2)

χφ(ρ,∞)

χτ (ρ, 1)

χτ (ρ, 2)

χτ (ρ,∞)

Fig. 1. 1-bit Quantization-loss versus bandwidth ρ

µ = 1, the best performance (−1.6 dB) in φ is attained with a
bandwidth fraction of ρ = 0.68. For τ the best configuration
(−1.81 dB) is ρ = 0.86. With oversampling the tendency is
to use the full bandwidth (ρ = 1). Fig. 2 shows the feasi-
bility region for different oversampling factors µ ≥ 1 which

is attained by plotting the values NMSEφ and NMSEτ after
solving

ρ? = arg min
ρ

NMSEW(ρ, µ) s.t. 0 ≤ ρ ≤ 1 (39)

for fixed µ and different weightings α. It can be observed
that without oversampling a compromise between the two pa-
rameters has to be made. Increasing for example the perfor-
mance of the carrier-phase measurement results in a perfor-
mance loss for the time-delay. This is not the case with over-
sampling where the highest performance gain is attained by
doubling the sampling rate of the receiver. Further increasing
the sampling rate only gives marginal additional performance.
Also the performance gains for the maximum-likelihood es-
timator (MLE) on different points of the feasibility regions
are plotted in Fig. 2. It can be observed that the estimator
achieves the same improvement through the analog front-end
design as predicted by the optimized performance bound.
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τ

1-bit (ρ = 1, µ = 1)
1-bit (ρ?, µ = 1)
1-bit (ρ?, µ = 2)
1-bit (ρ?, µ ≈ ∞)
MLE Simulations

Fig. 2. Feasibility Region - Normalized MSE

6. CONCLUSION

Simple ADC allows to reduce the complexity of analog re-
ceive systems and to simplify digital signal processing. Here
it was proposed to optimize the analog radio front-end with
respect to a theoretic performance measure behind an quan-
tization device. For the extreme case of 1-bit quantization it
was shown that the well-known −1.96 dB performance loss
is not valid in the context of low SNR signal parameter esti-
mation if appropriate noise correlation is present. Here these
correlations were produced in a controlled fashion through
the analog preprocessing chain leading to significantly higher
system performances. In practice these improvements are
achieved by calculation of the optimum estimator.
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