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ABSTRACT

We describe an iterative algorithm for quantizing overcomplete
frames that achieves more than 18 dB/Octave improvement in the
reconstruction error due to quantization. It starts with the trel-
lis quantization path then successively refines the estimation with
monotonically improving quantization through turbo iterations. We
call the procedure turbo quantization because it resembles turbo
coding in the error control coding literature.

Index Terms— quantization, frames, oversampling, optimiza-
tion, integer programming.

1. INTRODUCTION

Overcomplete frames provide a flexible representation for signals in
L2(R) (the space of finite-energy functions or signals) with a stable
reconstruction operator [1, 2]. They are encountered in numerous
signal processing applications, e.g., discrete wavelet transform, filter
banks, Gabor transform, and oversampled data converters. Frames
exploit the duality between L2(R) and l2(Z) (that is the space of
square summable sequences) to provide one-to-many discrete equiv-
alents of signals in L2(R). This mapping provides a rigorous gen-
eralization to orthonormal basis of L2(R). The redundancy in the
mapping, that is enabled by oversampling in the overcomplete frame
representation, enables the deployment of optimization techniques
to acheive desired criteria in the frame representation. The quantiza-
tion of the coefficients of the frame representation has many impor-
tant applications in the context of signal coding and analog-to-digital
conversion. It has been considered in many earlier works, e.g., [3]-
[7]. The common factor among all quantization algorithms is to
exploit the null-space of the frame operator to minimize the quan-
tization or reconstruction error. In [3], constraints on the quantized
coefficients were set to satisfy consistent reconstruction conditions
that was shown to achieve O(1/r2) performance, where r denotes
the logarithm of the frame oversampling factor. Noise shaping of the
quantization noise, that mimics sigma-delta converters [8], is used in
[5] and [6]. In [5], the quantization noise at time τ is projected onto
the following sample in an approximation to first-order sigma-delta
converters. This was generalized in [6] where higher order noise
shaping filters are used. The variance of the quantization noise acts
as O(1/r2). A different approach for frame quantization was pro-
posed in [7], where the quantization is modeled as a quadratic integer
programming problem and a greedy procedure for trellis quantiza-
tion was developed to solve the problem. The reported quantization
performance was better than O(1/r2). The trellis quantization pro-
cedure could be combined with other quantization algorithms, e.g.,
noise shaping, for improved performance.

In this work, we extend the trellis quantization procedure in [7]
to turbo quantization. Turbo quantization refers to an iterative quan-
tization scheme, with monotonically decreasing quantization error.

The turbo quantization procedure has three main components:
1. The forward-backward algorithm that is run at each iteration.

This algorithm is a generalization of the trellis quantization
procedure in [7].

2. Reordering of the frame coefficients, where at each iteration
we reorder the frame coefficients to randomize the quantiza-
tion error of successive coefficients.

3. Extrinsic quantization information that is exchanged between
iterations to improve the quantization error.

The proposed turbo quantization procedure resembles turbo coding
in the context of error control coding (and hence it gets this name).
It is shown to provide significant quantization improvement and the
quantization noise variance is shown to be better than O(1/r5) with
guaranteed stability. This quantization behavior is (to our knowl-
edge) the best reported results in the literature. In our analysis, we
focus on finite-dimensional frames but this could be extended to in-
finite frames using sliding windows.

The paper is organized as follows. In section 2 we provide
necessary background of the optimization model of the quantiza-
tion problem and the trellis quantization procedure. Then, in section
3, we introduce the forward-backward quantization algorithm, fol-
lowed by the turbo quantization algorithm in section 4. Finally in
section 5, the proposed algorithm is evaluated and compared with
prior art using finite tight frames. Throughout the paper we will use
the following notation. Bold lower-case letters denote column vec-
tors, and ci denotes the i-th element of c. c′ denotes the transpose
of c. ⟨., .⟩ denotes the inner product defined on the corresponding
Hilbert space. We assume all vectors and matrices are real-valued.
Additional notations are introduced when needed.

2. BACKGROUND

2.1. Frames

A set {ϕj}N
j=1 constitutes a frame in the finite-dimensional Hilbert

space H if there exist two positive real numbers A and B such that
for any x ∈ H

A ∥x∥2 ≤
X

j∈J

|⟨x, ϕj⟩| ≤ B ∥x∥2 (1)

The frame is overcomplete if the dimension of H (denote it by K) is
less than N . and we have

x =

N
X

j=1

cjϕj (2)

where c is in general not unique if K < N . This redundancy could
be exploited to optimize the quantization noise of overcomplete
frames. In the following discussion, we assume finite-dimensional
frames, i.e., N < ∞.
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2.2. Optimization Model

The quantized frame coefficients ec could be expressed as:

ec = ⌊c⌋ + α (3)

where ⌊·⌋ denotes the floor integer operator, and α is an N × 1 vec-
tor whose entries {αi}N

i=1 belong to a finite set of integers whose
size depends on the number of least significant bits that could be
varied in the optimization problem. In the simplest case (which we
use in the remainder of the paper), αi ∈ {0, 1}, which corresponds
to varying only the least significant bit of the quantized coefficients.
The objective of the quantization optimization is to find α that min-
imizes the reconstruction error after quantization. It was shown in
[7] that, the quantization optimization problem is a quadratic integer
programming problem of the form

Ψ = ⟨L(e − α), (e − α)⟩ (4)

where L is a self-adjoint operator (which, in case of minimizing the
mean reconstruction error, equals the frame operator), and

e , c − ⌊c⌋ (5)

2.3. Trellis Quantization

The trellis quantization procedure [7] is a greedy solution to the op-
timization problem in (4). The objective function could be expressed
recursively as [7]:

Jτ = Jτ−1 + |ετ |2⟨ϕτ , ϕτ ⟩ + 2
X

t<τ

εtετ ⟨ϕt, ϕτ ⟩ (6)

where Ψ = JN and ε is the quantization error vector that is defined
as

ε , e − α (7)

Note that, Jτ could be regarded as the reconstruction error when the
coefficients from τ + 1 to N are not quantized. The trellis quanti-
zation procedure uses a trellis of N steps with the number of states
at step τ equals the possible quantization values of ατ . In the binary
case, which we consider here, we have two states that represent 0
and 1. Note that, in the more general case we may combine more
than one coefficient in a single step. If l coefficients are combined,
then we have N/l steps with 2l states per step. The optimal path
through the trellis yields the quantization values of all coefficients.
The cost function that is evaluated on the trellis is an approximation
of (6). Each state at time τ keeps track of the best path that leads to
it. The recursive metric for the k-th state at step τ is computed as:

J(k)
τ = min

i
[J

(i)
τ−1 +

X

t<τ

2ε
(i)
t ε(k)

τ ⟨ϕt, ϕτ ⟩] + |ε(k)
τ |2⟨ϕτ , ϕτ ⟩] (8)

Note that, {ε(i)
t }t<τ specifies the trellis path up to state i at time

τ − 1. If the best previous state is p, then the updated path for state
k at τ is specified by:

ε
(k)
t = ε

(p)
t , for t = 1, 2, ...., τ − 1 (9)

and ε
(k)
τ is specified by the quantization value of the k-th state at

step τ . The algorithm is suboptimal because the relation between
the quantization of the τ -th coefficient and the quantization of coef-
ficients of index less than τ − 1 is evaluated only through the trellis
path ending at step τ − 1. Therefore not all possible combinations
of this quantizations are tested.

2.4. Comments

The trellis expansion can be viewed as a special case of the common
branch-and-bound algorithm for discrete optimization [9]. It could
be slightly modified to accommodate the conventional branch-and-
bound algorithm by investigating all possible paths at each step and
allowing the best two to survive (rather than allowing one path per
state). In this case, the number of survived paths could be increased
to more than two.

The trellis expansion as described in the previous section has
three problems:

1. Some potentially good paths are pruned prematurely if they
do not satisfy (8).

2. The best path is dependent on the ordering of the frame coef-
ficients.

3. The expansion assumes we have no quantization errors in fu-
ture frame coefficients.

In the following, we describe two algorithms: the forward-backward
algorithm and the turbo quantization algorithm that efficiently ad-
dress these issues and provide significant improvement in frame
quantization.

3. THE FORWARD-BACKWARD ALGORITHM

The forward-backward algorithm was introduced in [10] in the
context of Maximum-a-Posterior (MAP) decoding of convolutional
codes. It has also been used in the expansion of Hidden Markov
Models (HMM) in the speech recognition context [11]. In an ab-
stract way, the algorithm has three components: forward expansion,
backward expansion, and combining forward and backward met-
rics. For our quantization purposes the proposed forward-backward
algorithm follows the same line.

The forward expansion of the forward-backward algorithm is the
same as the trellis expansion. The backward algorithm operates sim-
ilarly but with the coefficients in reverse order. The metric recursion
(analogous to (8)) can be expressed as

R(k)
τ = min

i
[R

(i)
τ+1+

X

t>τ

2ε
(i)
t ε(k)

τ ⟨ϕt, ϕτ ⟩]+|ε(k)
τ |2⟨ϕτ , ϕτ ⟩] (10)

where ε
(i)
t is defined as in (8) for the i-th state at τ + 1. The k-th

state at time τ keeps track of the path {ε(k)
t }t≥τ that leads to the

state. Note that, the final recursion value R
(k)
1 has the reconstruction

error due to the quantization of the path leading to k-th quantization
value of the first coefficient.

After the forward and backward expansions are completed, we
have two sets {J(k)

τ , R
(k)
τ } for 1 ≤ τ ≤ N , along with the cor-

responding quantization paths. Note that, J
(k)
τ denotes the recon-

struction error for the quantization path that leads to state k at step
τ assuming that εt = 0 for t > τ (i.e., with no quantization error of
future coefficients). Similarly, R

(k)
τ denotes the reconstruction error

for the backward quantization path that leads to state k at step τ as-
suming that εt = 0 for t < τ . Combining the forward and backward
metrics is performed at each trellis step. The k-th state at step τ of
the forward expansion is combined with the j-th state of step τ + 1
of the backward expansion to have a complete quantization path. If
{ε(k)

t }t≤τ is the forward path and {ε(k)
t }t>τ is the backward path,

then the forward-backward metric in the transition from state k at
step τ to state j at step τ + 1 is

Ψ(k,j)
τ = J (k)

τ + R
(j)
τ+1 + 2

X

t≤τ

X

l>τ

ε
(k)
t ε

(j)
l ⟨ϕt, ϕl⟩ (11)
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Note that Ψ
(k,j)
τ is the reconstruction error with the combined quan-

tization path

ε(k,j)
τ =

h

ε
(k)
1 , . . . , ε(k)

τ , ε
(j)
τ+1, . . . , ε

(j)
N

i′
(12)

Hence, Ψ
(k,j)
τ could alternatively be computed from (4) as

Ψ(k,j)
τ = ⟨Lε(k,j)

τ , ε(k,j)
τ ⟩ (13)

The optimal quantization path for the forward-backward algorithm
is ε

(k̂,ĵ)
τ̂ , where

(τ̂ , k̂, ĵ) = argmin
τ,k,j

Ψ(k,j)
τ (14)

Note that, the forward-backward algorithm investigates all paths at
all steps in the trellis expansion even the ones that are pruned later
in the forward and backward expansions. Therefore, it addresses the
first problem of the trellis expansion that was discussed in the previ-
ous section. The other issues are addressed by the turbo quantization
procedure in the following section.

The forward-backward algorithm comprises two trellis expan-
sions plus the merging step. It has roughly three times the complex-
ity of the trellis quantization procedure.

4. TURBO QUANTIZATION

The quantization path, and hence the reconstruction error, of the trel-
lis expansion and the forward-backward algorithm depends on the
ordering of the frame coefficients because of the continuous pruning
of paths according to the value of the corresponding metric. This de-
pendency could be reduced if the algorithms are run multiple times
with different ordering of the frame coefficients. The chosen quanti-
zation path corresponds to the one with the minimum overall metric
value. However, this ordering should be carefully performed to have
reasonable correlation between successive coefficients. The choice
of the first coefficient is totally arbitrary, but successive coefficients
are sorted according to the correlation with earlier ordered coeffi-
cients. In particular, assume we have ordered coefficients up to step
τ , with order π1, π2, . . . , πτ , then the coefficient at τ + 1 is chosen
from the remaining coefficients such that it has maximum correlation
with earlier coefficients. Let

Πτ , {π1, π2, . . . , πτ} (15)

then the (τ + 1)-th coefficient is chosen according to

πτ+1 = argmax
k/∈Πτ

X

i≤τ

Wi∥⟨ϕk, ϕπi⟩∥
2 (16)

where {Wi} are appropriate weighting to give more emphasis to the
most recent coefficients. Note that, coefficient ordering at each turbo
iteration resembles the interleaver in turbo coding schemes [12],
whose purpose is to randomize the channel errors between the two
constituent convolutional codes. Random interleaving usually yield
better performance. In our context, we have more degrees of free-
dom because we do not have constituent codes and we could have a
different ordering for every iteration.

Running the trellis quantization or the forward-backward algo-
rithms multiple times would improve the performance. However,
the critical step that contributes to the superior performance of turbo
quantization is the propagation of quantization estimates through
turbo iterations such that the reconstruction error is monotonically
decreasing. In other words, the quantization path at turbo iteration
l is passed as extrinsic information to the trellis expansion for turbo

iteration l + 1, which has a different ordering of the frame coeffi-
cients. This extrinsic information is exploited by the constituent trel-
lis quantization procedure or the forward-backward algorithm such
that the reconstruction error is monotonically decreasing (or non-
increasing). This resembles the extrinsic information that carries the
a priori probabilities of information bits in the turbo coding context
[12].

To enable the deployment of the extrinsic information across
turbo iterations, we introduce slight modification to the trellis ex-
pansion. Recall that, in the original trellis quantization procedure
in section 2.3, the recursive metric J

(k)
τ represents the reconstruc-

tion error due to the quantization path that leads to state k at step τ
assuming that the quantization error of future samples is zero. Let
{ε(k)

t }t≤τ be the quantization path to state k. Define

ξ(k)
τ , [ε

(k)
1 . . . ε(k)

τ 0 . . . 0]′ (17)

which has N − τ zeros. Then it is straightforward from (4) to show
that J

(k)
τ in (8) could be expressed as

J (k)
τ = ⟨L ξ(k)

τ , ξ(k)
τ ⟩ (18)

which resembles (13) for the forward-backward algorithm. Assume
that, the best quantization path after the turbo iteration l is

η(l) = [η
(l)
1 . . . η

(l)
N ]′ (19)

where ηi , ei −αi (which is defined similar to εi) is introduced for
notational convenience. Let Π(l)

N denote the coefficient ordering for
iteration l as in (15). The extrinsic information about quantization is
propagated from one turbo iteration to the following by modifying
ξ(k)

τ in (17) at turbo iteraion l as

ξ̃
(k)

τ (l) , [ε
(k)

π
(l)
1

. . . ε
(k)

π
(l)
τ

η
(l−1)

π
(l)
τ+1

. . . η
(l−1)

π
(l)
N

]′ (20)

i.e., for future samples we use the optimal quantization error from the
earlier turbo iteration rather than zero. The corresponding recursive
metric becomes

J (k)
τ (l) = ⟨L ξ̃

(k)

τ (l), ξ̃
(k)

τ (l)⟩ (21)

and we have similar relations for the backward part of the forward-
backward algorithm in the turbo iteration l:

ζ̃
(k)

τ (l) , [η
(l−1)

π
(l)
1

. . . η
(l−1)

π
(l)
τ−1

ε
(k)

π
(l)
τ

. . . ε
(k)

π
(l)
N

]′ (22)

R(k)
τ (l) = ⟨L ζ̃

(k)

τ (l), ζ̃
(k)

τ (l)⟩ (23)

It is straightforward to show that the overall reconstruction error of
the forward-backward algorithm is non-increasing with turbo itera-
tions since the solution of the earlier turbo iteration can always be
found by setting ε

(k)

π
(l)
τ

= η
(l−1)

π
(l)
τ

for states on the optimal path of

iteration l − 1. This choice is a subset of all possible choices at all
steps in the forward-backward algorithm. Hence, the reconstruction
error is non-increasing.

From the above discussion, the turbo quantization procedure
could be summarized in the following steps:

1. Run the forward-backward algorithm once on the frame coef-
ficients to compute η(1), set the turbo iteration index to l = 2.

2. Pick a random start coefficient and order the rest of the frame
coefficients as in (16) to compute Π

(l)
N .
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3. Run the forward-backward algorithm with the new ordering
Π

(l)
N and the extrinsic information η(l−1) as in (21) and (23)

to update η(l) as in (14).

4. If the maximum number of turbo iterations is reached output
η(l) as the final quantization path, otherwise increment l and
go to step 2.

Denote the final metric of the forward-backward algorithm at itera-
tion l by Ψ(l). The turbo iterations guarantee that Ψ(l+1) ≤ Ψ(l).
Since {Ψ(l)} is a monotonic bounded sequence, it is guaranteed to
converge to the optimal solution by the monotone convergence the-
orem [13]. Further, unlike the sigma-delta frame quantization, e.g.,
[5, 6], the proposed turbo quantization does not have stability issues
as the quantization error is always bounded. Note that, the atomic
trellis quantization procedure could be modified to allow more gen-
eral configurations, e.g., using more than two quantization levels or
including the quantization of more than one coefficient in the state,
without changing the structure of the turbo quantization algorithm.

The complexity of coefficient ordering and the overhead of the
metric computation with the extrinsic information are negligible.
Therefore, the complexity of the turbo quantization algorithm is
roughly the complexity of the forward-backward algorithm multi-
plied by the number of turbo iterations.

5. SIMULATION RESULTS

We tested the proposed quantization algorithms using geometrically
uniform tight frames that are generated as described in [3]. The test
vectors in RK are zero-mean Gaussian iid sequences with unity vari-
ance. The coefficients are normalized to the maximum value prior
to quantization. The frame functions {ϕj} in the synthesis process
are not quantized. In the following, r denotes the redundancy factor
(which equals log2(N/K)). In Fig. 1, we compare all the proce-
dures introduced in the paper, with 8 bits of quantization (we get sim-
ilar results with different resolutions). We also included the rounding
results, which behave as O(1/r). In this figure, we use a trellis di-
agram with four states at each step by combining two coefficients
together. As noticed from the figure, the forward-backward algo-
rithm performs significantly better than the trellis quantization in [7].
The multiple forward-backward algorithm runs multiple forward-
backward iterations with different ordering and picks the best one
(but without passing extrinsic information). The improvement of the
turbo quantization against multiple forward-backward algorithms is
due to the extrinsic information. In both cases we run 20 iterations.
The performance of the turbo quantization algorithm is on average
better than O(1/r5), and it is better than O(1/r6) at high r; a sig-
nificant improvement over earlier reported results, e.g., [3]-[6].

In Fig. 2, we show a typical example for the improvement of the
reconstruction error with turbo iteration. In Fig 2a, we show the re-
construction error with different redundancies versus the number of
turbo iterations. Note that, there is incremental change when dou-
bling the turbo iterations from 10 to 20 iterations. This is manifested
in Fig 2b where we show the average cumulative reconstruction er-
ror improvement versus the number of turbo iterations when r = 7.
It resembles the EXIT charts in turbo coding context [14]. Most of
the error improvement takes place in the first 10 iterations.

Note that, the performance of proposed procedures could be fur-
ther improved by increasing the complexity of the underlying quanti-
zation trellis by allowing more quantization levels or grouping more
coefficients in a single trellis step.
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6. DISCUSSION

We presented a new concept for quantization, which we called
turbo quantization, that uses a simple core quantization procedure
and monotonically improves the quantization with turbo iterations.
For the core quantization procedure, we introduced the forward-
backward algorithm that generalizes trellis quantization by allowing
expansion in the forward and reverse directions, and investigating the
quantization paths at all steps. In addition to the core quantization
procedure, the turbo quantization has two components: coefficient
reordering to achieve error randomization across turbo iterations,
and exchanging extrinsic quantization information across iterations
to monotonically improve the optimization metric. The convergence
and stability of the proposed procedure are always satisfied. The
complexity of the proposed algorithm is linear with the frame size
and the number of turbo iterations. The algorithm is scalable by
varying the number of turbo iterations or the complexity of the core
quantization algorithm. The turbo quantization algorithm can be
regarded as a feedback procedure at the whole frame level rather
than a sample-by-sample feedback in noise-shaping procedures. It
was shown to provide significantly better quantization performance
than earlier reported results.

Although the discussion focused on finite-dimensional Hilbert
spaces, the results could be generalized to infinite-dimensional
spaces using sliding quantization windows that are commonly used
in the context of error control coding for long information blocks.
Further, the core quantization procedure could be generalized to
other integer programming techniques, e.g., branch-and-bound, that
could exploit the extrinsic information for improved performance.
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