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Abstract—Subtractive dither in quantizers is examined as a
means to mitigate quantizer non-linearity. The effects of filtering
the dither signal to shape its spectral content outside the signal
band while maintaining its benefits are studied in detail. Design
strategies for finite impulse response (FIR) filters that accomplish
spectral shaping as well as allay quantizer non-linearity are de-
rived theoretically. Simulation results for low/medium resolution
quantizers are presented to validate the derived conditions on
the filter structures.

I. INTRODUCTION

Quantizers are the portals to digital signal processing of
all real-world signals and hence serve as the main interface
between natural and machine-based signal processing. An
example mid-tread quantizer is shown in Fig. 1. As can be
seen, the input-output characteristic of any example quantizer,
is non-linear and hence signals when quantized result in
errors which have significant dependence on the input signal
and hence are spectrally non-white [1]–[3], [5]. A major
understanding from these works is that the input signal to
the quantizer needs to be equipped with certain statistical
properties in order to ensure that the quantization error is
white and its power is the ubiquitous ∆2/12 (∆ being the
quantization step size). In most practical scenarios though, it is
highly infeasible to handle signals with the required statistical
properties. So, a small signal, random in nature (called dither)
is added to the input in order to make the composite signal
samples unpredictable at any given time.

A. Dithered quantization

Let us define a dithered quantizer more formally. A be-
havioral schematic is presented in Fig. 2. A random signal
r[n] is added to the signal to be quantized x[n] and the
composite signal z[n] = x[n] + r[n] is passed through the
quantizer. A dithered quantizer can be implemented in a few
different flavors, each unique in the properties it imparts to
the quantization error, Figs. 2(a)-(c).

In Fig. 2(a), the added dither signal r[n] is subtracted
digitally from the quantized value y[n] and hence is called a
subtractively dithered quantizer. Likewise, Fig. 2(b) refers to
a non-subtractively dithered quantizer (commonly phrased as
additive dithered quantizer). The added dither, r[n] is usually
constrained to be bounded between one least significant bit
(LSB) of the quantizer. Separate conditions [3] have been
theoretically derived for either case to ensure that the error-
samples (e[n] = y[n]−z[n] for Fig. 2(a) and e[n] = y[n]−x[n]

Fig. 1: Mid-tread quantizer

for Fig. 2(b)) are independent (among themselves as well as of
the input) and uniformly distributed both in terms of first and
second order statistics. Henceforth, such error would be called
well-behaved in this paper. It is found that a well-behaved
quantization error can be guaranteed, for a subtractive dithered
quantizer, if the dither statistics satisfies certain properties.
The simplest class of dither conforming to these statistics is
a uniformly distributed dither. However, for an additive dither
situation, such conditions are not easily derivable [3].

Unfortunately, a uniformly distributed white dither signal,
r[n] would contribute too much noise to the quantizer output.
In fact, a uniformly distributed dither signal spanning one
quantizer LSB would degrade the overall signal-to-noise ratio
(SNR) by 3dB. Furthermore, it may be impossible or at least
extremely challenging to digitally generate such analog dither
[6]. The second problem is solved using hardware-friendly
digital dither (that spans only a finite set of values), while
the first problem is solved by spectrally shaping such dither
out of the band of interest using digital filters [4]. Such an
architecture is presented in Fig. 2(c) as an extension of Fig.
2(a), where d[n] is a Bernoulli signal with equal probability of
a 0 or 1. However, filtering a signal tantamounts to modifying
its statistical properties. Consequently, the error signal e[n] in
Fig. 2(c) may not be well-behaved as noted above even if d[n]
is sample-wise independent, identically distributed (i.i.d.) and
white.

B. Prior-art

There have been some very interesting works treating
filtered dither signals and their efficacies in whitening the
quantization error [4], [7], [8]. With reference to Fig. 2(c), in
[4], a detailed analysis is done on the properties of r[n] where
d[n]’s are i.i.d. random variables. However, the analysis is
specific to additive dithered quantizers and imposes very strict
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conditions on the filter-coefficients (finite (FIR) or infinite
(IIR) impulse response). In [8], a simplified condition is
derived for FIR filters. However, the quantizer treated in [8],
works on integer valued inputs only while the work in [7]
provides conditions for the impulse response of an IIR filter
(integrator in feed-forward path of a sigma-delta modulator).

C. Contribution

The main contribution of this work is the formulation
of conditions for integer-valued FIR filters operating on
continuous-valued inputs for a subtractively dithered quantizer.
We theoretically derive conditions for the error-sequence,
subject to such filtering, to be well-behaved. In the next
section, we detail the behavioral model to be used in all sub-
sequent derivations. Section III furnishes the main theoretical
results accompanied by some relevant proofs while Section IV
provides an insight into the simulation results to validate the
theory. We conclude the paper in Section V.

II. BEHAVIORAL MODEL

The model is as presented in Fig. 2(c). Let us define an i.i.d.
Bernoulli sequence d[n] that follows the statistics: Pr(d[n] =
0) = Pr(d[n] = 1) = 0.5. The sequence d[n] is passed through
a digital filter G(z) having a finite impulse response g[n] ∈ Z
of length K to produce an output r[n]. The filter gain is so
adjusted that the output r[n] spans ∆, LSB of the quantizer.
Consequently, the filtered output r[n] can be expressed as

r[n] =
∆

L
(g[0]d[n] + g[1]d[n− 1] + .....

....+ g[K − 1]d[n−K + 1]) (1)

where L =
∑K−1
i=0 |g[i]| . The quantity ∆/L can be thought

of as the dither LSB (the minimum resolution of the added
signal rn). The input signal x[n] is assumed to be of arbitrary
distribution and bounded in [−(Q− 1)∆/2, (Q− 1)∆/2] for
a Q-level quantizer (Q ∈ N ∩ (1,∞)). The signal r[n] is
added with the input x[n] to result in the composite signal
z[n] = x[n] + r[n]. z[n] is quantized to generate v[n]. The
added dither signal r[n] is subtracted from v[n] to result in the
actual output y[n]. The resultant quantization error is defined
as e[n] = y[n]− x[n] = v[n]− x[n]− r[n].

Note-1: Since the dither resolution is finite, namely ∆/L,
hence any input of the form x[n] = [x[n]] + 〈x[n]〉 where
[x[n]] = k∆, k ∈ Z and 〈x[n]〉 < ∆/L will not see the effect
of the added dither, and hence the quantization error will not
be guaranteed to be well-behaved. In the remainder of the
paper, we shall assume that the input signal x[n] excludes the
above special class of signals.

Note-2: In the following arguments, wj and w[j] would refer
to the same quantity and will be used interchangeably.

III. MAIN RESULT: THEORY

Theorem 1: For a dithered quantizer, modeled in Section
II,

P.1) The error sequence en is an identically distributed uni-
form random variable independent of the input xn−m,∀k1 ∈

Z,∀m ∈ Z if and only if (〈〉T operator denotes modulo-T
operation)

C.1) A non-negative integer i < K exists such that
〈gik1〉L = L/2

P.2) The error sequence pair (en, en−p)∀p ∈ Z ∩ (0,K)
is pairwise independent, each being an identical uniform
distribution ∀(k1, k2) 6= (0, 0) if and only if either of the
following are true

C.2) A non-negative integer l < p exists such that 〈glk1〉L =
L/2

C.3) A non-negative integer 1 ≤ r ≤ p exists such that
〈gK−rk2〉L = L/2

C.4) A non-negative integer p ≤ m < K exists such that
〈gmk1 + gm−pk2〉L = L/2

P.3) The error sequence pair (en, en−p)∀p ∈ Z ∩ [K,∞)
is pairwise independent, each being an identical uniform
distribution ∀(k1, k2) 6= (0, 0) if both the following conditions
hold

C.5) The FIR filter coefficients g[k] are of the form 2i where
i takes on each value in [0, s− 1] at least once and

C.6) L =
∑K−1
i=0 |g[i]| = 2s where s ∈ Z ∩ (1,K]

Remark: For notational convenience, all properties are de-
noted as P.’s while all conditions are denoted as C.’s. Both
P.1 and P.2 are if and only if conditions while P.3 is only a
sufficiency condition. The strategy of the proof would be to
proceed with P.2 first. The proof of P.1 would follow next
while P.3 would be proved as a consequence of P.2 and would
form the main result of this work, providing easy-to-use closed
form solutions for the shaping filter G(z). Let us proceed with
P.2 now.

Proof: The proof would use characteristic functions [9]
to derive conditions on the specific properties of the added
dither signal. This is a commonly used technique for such
applications [8]. In fact, from [3], we know, that the joint
characteristic function (jcf) for error-samples (en, en−p) can
be written as, ∀p ∈ Z ∩ (0,K) for (k1, k2) ∈ Z2

Φen,en−p
(u1, u2) =

∞∑
k1=−∞

∞∑
k2=−∞

sin(π∆(u1 − k1/∆))

(π∆(u1 − k1/∆))

sin(π∆(u2 − k2/∆))

(π∆(u2 − k2/∆))

Φxn,xn−p(
−2πk1

∆
,
−2πk2

∆
)

Φrn,rn−p(
−2πk1

∆
,
−2πk2

∆
) (2)

Hence, for the joint density of (en, en−p) to be uniform and
pairwise independent, it suffices to show [3],

Φrn,rn−p
(
−2πk1

∆
,
−2πk2

∆
) = 0

∀(k1, k2) ∈ Z2 − (0, 0) (3)
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(a) (b) (c)

Fig. 2: Dithered Quantizers: (a) Subtractive (b) Non-subtractive/Additive (c) Filtered-subtractive

The jcf of the dither samples (rn, rn−p) is defined as

Φrn,rn−p
(u1, u2) = E(ej(u1rn+u2rn−p)

= E(ej
∆
L (u1

∑K−1
m=0 gmdn−m+u2

∑K−1
l=0 gldn−p−l)

=

p−1∏
l=0

Φd(
∆

L
u1gl)

K−1∏
m=p

Φd(
∆

L
(u1gm + u2gm−p))

p∏
r=1

Φd(
∆

L
u2gK−r) (4)

Now, for a Bernoulli dither dn, with Pr(dn = 0) =
Pr(dn = 1) = 0.5,

Φd(v) = e(−jv/2) cos(v/2) (5)

From Eqn. (3), we need to evaluate Eqn. (4) for u1,2 =
2πk1,2/∆. Thus, from Eqns. (4) and (5), we can write
∀(k1, k2) ∈ Z2 − (0, 0)

|Φrn,rn−p
(−2πk1

∆
,
−2πk2

∆
)| =

p−1∏
l=0

| cos(
πk1gl
L

)|

K−1∏
m=p

| cos(
π(k1gm + k2gm−p)

L
)|

p∏
r=1

| cos(
πk2gK−r

L
)| (6)

This proves the sufficiency of the theorem, since if any one
of the product series terms is zero (C.2-4), P.2 is satisfied.

Necessity: The necessity conditions can be likewise argued,
and is omitted here for brevity.

Discussion: It may not be always possible to design FIR
filter coefficients satisfying conditions C.2-4 of Theorem 1
since the filter coefficients are not available in a closed-form
solution. Furthermore, it’s not practically possible to evaluate
the characteristic function in Eqn (6). at all integer values of
(k1, k2) to identify an appropriate filter structure. P.3 addresses
this issue in further detail.

For the proof of P.1, we write the probability density
function (pdf) of the error sequence en conditioned on the
input xn−m∀m ∈ Z as

pen|xn−m
(a|b) =

∞∑
l=−∞

pzn|xn−m
(−a+ l∆|b) (7)

Now, it is not difficult to see that

pzn|xn−m
(c|b) =pxn+rn|xn−m

(c|b)
=pxn|xn−m

(c|b) ∗ prn(c) (8)

since rn is independent of both xn and xn−m where a, b and
c are in the appropriate domains and ∗ denotes convolution.

Thus, from Eqns. (7) and (8), the characteristic function (cf)
of en conditioned on xn−m, can be written as

Φen|xn−m
(u) =

1

∆

∞∑
k=−∞

Φxn|xn−m
(−u)

K−1∏
i=0

Φdn(−ugi
∆

L
)
sin(π∆(u1 − k1/∆))

(π∆(u1 − k1/∆))
(9)

For the error-sequence en to be independent of xn−m and
be uniformly identically distributed, Φen|xn−m

(− 2πk1

∆ ) must
evaluate to 0 for every k1 6= 0. For this to happen, for any
arbitrary input, from the proof of P.2,

K−1∏
i=0

|Φdn(
−2πk1gi

∆
L

∆
)| =

K−1∏
i=0

|Φdn(
−2πk1gi

L
)|

=
K−1∏
i=0

| cos(
πk1gi
L

)| = 0 (10)

Eqn. 10 holds if and only if C.1 holds (the argument of at least
one cosine term is driven to an odd multiple of π/2) hence
proving P.1

The proof of P.3 will lead from that of P.2 through an
important observation. Since, p ≥ K, hence it is not difficult
to see that,

prn,rn−p
(r1, r2) = prn(r1)prn−p

(r2)

Φrn,rn−p
(u1, u2) = Φrn(u1)Φrn−p

(u2) (11)

Now, from Eqn. (3), we need to prove that
Φrn,rn−p

(−2πk1

∆ , −2πk2

∆ ) goes to zero for all values of
(k1, k2) ∈ Z2 − (0, 0),∀p ∈ Z ∩ [K,∞). Based on Eqns.
(4)-(6), this is equivalent to proving

K−1∏
i=0

| cos(
πk1gi
L

)|| cos(
πk2gK−1−i

L
)| = 0 (12)

for all values of (k1, k2) ∈ Z2 − (0, 0),∀p ∈ Z ∩ [K,∞).
It is interesting to note that Eqn. (12) leads to an L-

periodic sequence (in k1 or k2) if condition C.1 is satisfied.
Consequently, it suffices to evaluate the cf of Eqn. (12) in a
finite set of L2 points. Now it becomes useful to consider the
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(a) error pdf for G1 (b) error pdf for G2 (c) error psd for G1

(d) error psd for G2 (e) Output spectrum for three different
scenarios

Fig. 3: Simulation results

following cases, ∀(k1, k2) ∈ [−L/2 + 1, L/2] assuming the
conditions in Theorem 1 hold (sufficiency).

• k1 = odd, k2 = odd One product term of the right-hand
side of Eqn. (12) can be written as cos(πkj

2r

2s ), j = 1, 2.
Hence for r = s − 1, we can write the product term as
cos(π2 kj) which goes to 0 since k1,2 are odd.

• k1 = odd, k2 = even Here, k1 will drive the product
term to 0 for r = s − 1. The symmetric case of k2 =
odd, k1 = even similarly can be shown to equate to 0.

• k1 = even, k2 = even Here, let k1,2 = 2l(2m + 1), l ≤
s−1 for any integer m. Then the product term containing
r = s− 1− l would yield cos(π2 (2m+ 1)) which again
goes to 0.

Discussion: C.5 and C.6 give easy formulae to design the
dither-shaping filter. The proposed solution to Eqn. (12) may
not be unique (under investigation), but the aforementioned
conditions are in tune with powers-of-2 FIR filters [10], and
hence amenable to facile design. It should further be noted
that condition C.5 is a subset of C.1 and hence ensures an
uniformly distributed error sequence independent of the input.
It is of interest to observe that though P.5 proves pair-wise
independence only for error samples separated by more than
K, for all practical purposes the error is white with a uniform
distribution.

IV. MAIN RESULTS: SIMULATION

Let us consider two filters, G1(z) and G2(z) (z-transforms
of 2 example filters g1[n] and g2[n] respectively) such that the
former satisfies neither of C.5 and C.6 while the latter satisfies
both.

G1(z) = 1− 3z−1 + 5z−2 − 9z−3 + 3z−4 − 3z−5

+ 9z−6 − 5z−7 + 3z−8 − z−9

G2(z) = −1− 2z−1 − 4z−2 − 8z−3 + 16z−4 − z−5

The input x[n] is chosen to be a continuous-valued sinusoid
at a normalized frequency of 0.002 with an amplitude of 2∆.
The signal is quantized into Q = 5 levels as in Fig. 1. In Fig.
3(a),(b), we plot the pdf of the error sequence en for both
the cases, while Fig. 3(c)(d) shows the spectra of the error
signal. As can be clearly seen, the proposed filter, namely
G2, whitens the error-sequence and exhibits an almost uniform
pdf (Fig. 3(b)) while G1 shows an almost triangular pdf (Fig.
3(a)) for the error samples. The error power spectral density
(psd) for G2 (Fig. 3(d)) is white, while the error psd for G1

exhibits multiple spurious tones at harmonic frequencies (as is
expected from a lookup table type non-linearity) (Fig. 3(c)).
In order to make a fair comparison, a third case where a
uniform dither signal r[n] (the case in Fig. 2(b)) is added
to the input signal before quantizing, is also considered. The
spectra of y[n] = x[n] + e[n] is plotted for all the three cases:
G1, G2 and uniform dither in Fig. 3(e). As can be seen, the
uniform dithered quantizer contributes the maximal in-band
power while whitening the output spectrum completely. G2

shapes the in-band dither power, as well as gets rid of any
spurious components, while G1 has the least in-band dither
power contribution but engenders harmful spurious tones at the
quantizer output. This is expected since, from P.1 e[n] being
independent of x[n] bequeaths the well-behaved properties of
e[n] on y[n].

V. CONCLUSION

A filtered dithering technique in quantizers is proposed.
Theoretical conditions on the filter structure are derived to
ensure independence, whiteness and uniform distribution of
the quantization error signal. Behavioral simulation results are
presented to corroborate the proposed results and claims.
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