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ABSTRACT

The widespread popularity of transform coding has made it central
to a wide range of methods in forensics, quality assessment and dig-
ital restoration. However, most approaches require prior knowledge
of the transform coding parameters. In this paper, we consider the
challenging problem of identifying the transform matrix as well as
the quantization step sizes of a transform coder, given a set of P
non-overlapping N -dimensional vectors observed as its output. We
formulate the problem in terms of finding the lattice with the largest
determinant that contains all observed vectors and we propose an
algorithm that is able to find the optimal solution. Our experimen-
tal analysis shows that the probability of success of the algorithm
quickly approaches 1 for small values of (P −N). The complexity
of the proposed algorithm grows linearly with the dimensionalityN .

Index Terms— Transform coding, lattice theory.

1. INTRODUCTION

The possibility of reverse-engineering complex chains of operators
starting from the available output signals has a great potential for
applications in a wide range of scenarios including, e.g.,: i) foren-
sics, in order to address tasks such as source device identification [1]
or tampering detection [2][3]; ii) quality assessment, to enable no-
reference methods that rely solely on the received signals [4][5]; iii)
digital restoration, which requires prior knowledge about the chain
of operations that affected a digital signal [6].

Signals are often compressed in a lossy coding format. Trans-
form coding [7] is, by far, the most widely adopted coding tool for
lossy compression of signals with memory, as indicated by its adop-
tion in all multimedia communication standards. As such, several
works exploited the footprints left by transform coding in the litera-
ture in the case of single [8], double [9][3] or multiple [10] JPEG
compression. Similar techniques were also applied to video sig-
nals [11][12][13][14][15].

All the aforementioned works require prior knowledge of the
type of standard being considered. This implies that the specific
transform in use is assumed to be known, whereas the quantization
step sizes need to be estimated. Although earlier standards (e.g.,
JPEG, MPEG-2 and MPEG-4) adopted the Discrete Cosine Trans-
form (DCT) on 8× 8 blocks, more recent coding architectures (e.g.,
JPEG2000 [16], H.264/AVC [17], HEVC [18]) are more diversified
in terms of both the type of transform being used and the block size.
These differences were recently exploited in [19] to identify the
video coding standard used to compress a sequence.
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Given the centrality of transform coding in multimedia applica-
tions, it is natural to try and develop a universal theory of transform
coder identification that is independent of the specific application
at hand. To this end, in this paper we consider a general model of
transform coding that can be tailored to describe a large variety of
practical implementations that are found in lossy coding systems,
including those adopted in multimedia communication.

Given the output produced by a specific transform coding chain,
we investigate the problem of identifying its parameters. We assume
both the size and the alignment of the transform to be known, as they
can be estimated with methods available in the literature [12][8]. We
propose an algorithm that receives as input a set of P transform de-
coded vectors embedded in a N -dimensional vector space and pro-
duces as output an estimation of the transform adopted, as well as
the quantization step sizes. We propose an algorithm that is able to
solve the problem and we formally study its convergence properties.
Our analysis shows that it is possible to successfully identify both
the transform and the quantization step sizes with high probability
when P > N . In addition, the complexity of the algorithm is shown
to grow linearly with N .

The proposed method is related to Euclid’s algorithm, which is
used to find the greatest common divisor (GCD) between two inte-
ger numbers. Euclid’s algorithm finds application in the analysis of
1-dimensional signals, e.g., to determine the periodicity of signals
from incomplete observations [20][21]. This is equivalent to esti-
mating the step size of a scalar quantizer, since the transform is triv-
ially defined. Conversely, the proposed method is tailored to work
with N -dimensional signals, thus broadly enriching the scope of the
applications that can be addressed.

To the best of the authors’ knowledge, the problem of identi-
fying a linear mapping based on the footprint left by quantization
was addressed only in [22], with the goal of investigating the color
compression history, i.e., the colorspace used in JPEG compression.
However, the solution proposed in [22] is tailored to work in a 3-
dimensional vector space, thus avoiding the challenges that arise in
higher dimensional spaces.

2. BACKGROUND ON LATTICE THEORY

In this section we provide the necessary background on lattice the-
ory. Further details can be found, e.g., in [23][24][25]. The symbols
x, x and X denote, respectively, a scalar, a column vector and a ma-
trix. A M × N matrix X can be written in terms of its columns,
X = [x1, . . . ,xN ]. Let L denote a lattice of full rank embedded in
RN . Let B = [b1,b2, . . . ,bN ], bi ∈ RN , denote a basis for the
lattice L. That is,

L = {x ∈ RN |a1b1 + a2b2 + . . .+ aNbN , ai ∈ Z}. (1)

In order to make the mapping between a basis and the corresponding
lattice explicit, the latter can be expressed asL(B). Any lattice basis
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also describes a fundamental parallelotope according to

P(B) =

{
x ∈ RN |x =

N∑
i=1

θibi, 0 ≤ θi < 1

}
. (2)

That is, P(B) is a parallelotope with one vertex in the origin and
edges parallel to the basis vectors. WhenN = 2, 3,P(B) is, respec-
tively, a parallelogram or a parallelepiped. Given a point z ∈ RN ,
let Pz(B) denote the parallelotope enclosing z. Pz(B) is obtained
by translating P(B) so that its origin coincides with one of the lat-
tice points. Figure 1(b) illustrates Pz(B) as a shaded region for the
vector z = x̃3.

Different bases for the same lattice lead to different fundamental
parallelotopes. However, the volume of P(B) is the same for all
bases of a given lattice. This volume equals the so-called lattice
determinant. If the lattice is full rank, the lattice determinant equals
the determinant of the matrix B, |L| = |det(B)|.

Let L denote a sub-lattice of L. That is, for any vector x ∈ L,
then x ∈ L. A basis B for L can be expressed in terms of B as B =
BU, where U is such that uij ∈ Z. Moreover, let det(U) = ±m,
then |L|/|L| = |det(U)| = m and we say that L is a sub-lattice of
L of index m. For example, the lattice in Figure 1(d) is a sub-lattice
of index 3 of the lattice in Figure 1(e).

3. PROBLEM STATEMENT

Let x denote a N -dimensional vector and W a transform matrix,
whose rows represent the transform basis functions. Transform cod-
ing is performed by applying scalar quantization to the transform co-
efficients y = Wx. LetQi(·) denote the quantizer associated to the
i-th transform coefficient. We assume that Qi(·) is a scalar uniform
quantizer with step size ∆i, i = 1, . . . , N . The reconstructed block
in the original domain is given by x̃ = W−1ỹ, where ỹi = Qi(yi).

Let {x̃1, . . . , x̃P } denote a set of P observed N -dimensional
vectors, which are the output of a transform coder. Due to quantiza-
tion, the unobserved vectors representing quantized transform co-
efficients {ỹ1, . . . , ỹP } are constrained to belong to a lattice Ly
described by the basis By = diag(∆1, . . . ,∆N ). Therefore, the
observed vectors belong to a lattice Lx described by the basis Bx =
W−1By ,

In this paper we study the problem of determining Bx from a
finite set of P ≥ N distinct vectors {x̃1, . . . , x̃P }. That is, we
seek to determine the parameters of a transform coder based on the
footprints left on its output. We propose an algorithm to solve this
problem and we study its convergence properties.

Note that when determining Bx, the proposed method does not
make any assumption on the structure of the transform matrix W. In
the general case, given Bx, it is not possible to uniquely determine
the quantization step sizes ∆i, i = 1, . . . , N . However, in the im-
portant case in which W represents an orthonormal transform, the
quantization step sizes can be immediately obtained since they are
equal to the lengths of the columns of Bx.

4. AN ALGORITHM FOR TRANSFORM IDENTIFICATION

In this section we propose an algorithm that is able to determine
the parameters of a transform coder from its output, i.e., a set of
observed vectors {x̃1, . . . , x̃P }. This is accomplished by finding a
suitable lattice L∗ such that {x̃1, . . . , x̃P } ⊂ L∗. In Section 6 we
show that L∗ ≡ Lx with high probability, provided that P −N > 0.

The problem of determining a basis for the lattice Lx is com-
plicated by the fact that we typically observe a finite (and possibly

ALGORITHM 1: TI algorithm
Input: Set of observed vectors O = {x̃1, . . . , x̃P }
Output: A basis B of the lattice solution of (3)

1. B(0) = initBasis(O);
2. S = {b1, . . . ,bN}; U = O \ S; r = 0;
3. while card{U} > 0;
4. Pick x̃ in U ;
5. U = U \ {x̃};
6. S = S ∪ x̃;
7. B(r+1) = recurseTI(B(r),S);
8. r = r + 1
9. end

small) number of vectors P embedded in a possibly large dimen-
sional space. More precisely, the number of lattice points is equal to
2NR̄, where R̄ denote the average number of bits allocated to trans-
form coefficients. Hence, this number increases exponentially with
the dimensionN and in most cases of practical relevance P � 2NR̄.

Another issue arises from the fact that, for a set of vectors
{x̃1, . . . , x̃P }, there are infinitely many lattices that include all of
them. Indeed, any lattice L̄ such that Lx ⊂ L̄ is compatible with the
observed set of vectors. In order to resolve this ambiguity, we seek
the lattice L∗ that maximizes the lattice determinant |L|, within this
infinite set of compatible lattices. That is,

maximize
L(B)

|L(B)|

subject to {x̃1, . . . , x̃P } ⊂ L(B).
(3)

The proposed method used to solve the problem above is de-
tailed in Algorithm 1. The method constructs an initial basis for
an N -dimensional lattice (line 1). This is accomplished by con-
sidering the vectors in O until N linearly independent vectors are
found. These vectors are used as columns of the starting estimate
B(0) and to populate the initial set of visited vectors S. We denote
with U the set of vectors in O that have not been visited yet. Then,
the solution of (3) is constructed iteratively, by considering the re-
maining vectors in U one by one. At each iteration, the function
recurseTI returns a basis for a lattice that solves (3), in which the
constraint is imposed only on the subset of visited vectors S, that is,
S ⊂ L(B). As such, the algorithm starts finding the solution of an
under-constrained problem and additional constraints are added as
more vectors are visited.

Figure 1 shows an illustrative example when N = 2 and three
vectors {x̃1, x̃2, x̃3} in Figure 1(a) are observed. The initial basis
(line 1) is constructed using x̃1 and x̃2, since they are linearly in-
dependent. Then, the point x̃3 is selected (line 4) and the function
recurseTI (line 10) is invoked returning a basis that solves (3),
i.e., a basis with the largest lattice determinant that includes all ob-
served vectors. Figure 1(f) illustrates such a basis.

The function recurseTI is detailed in Algorithm 2. It receives
as input a set of visited vectors S and the current estimate of a basis
B for the lattice L(B). In order to prevent numerical instability that
might be induced by the inversion of the matrix B, we perform basis
reduction according to the LLL algorithm [26] (line 1) and we find
a nearly orthogonal basis which is equivalent to B, but has a smaller
orthogonality defect. Figure 1(b) shows the reduced basis which is
obtained from the initial basis [x̃1, x̃2].

For each observed vector, we compute x̂ = B · round(B−1x̃),
which represents one of the vertices of the parallelotope enclosing x̃
(line 2 in Algorithm 2). If S ⊂ L, i.e., all the vectors in S belong to
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Fig. 1. An example of transform identification. A set of three observed vectors is given in (a). Then, (b)-(h) show, step-by-step, how the
solution to problem (3) is sought by Algorithm 1.

ALGORITHM 2: Bout = recurseTI(B,S)

Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.
Output: A basis of a lattice L with maximum determinant |L|,

such that S ⊂ L
1. B = LLL(B)
2. x̂i = B · round(B−1x̃i), i = 1, . . . , S;
3. if (maxj=1,...,S ‖x̃j − x̂j‖2) = 0
4. return B
5. else
6. f = arg minj∈{l|‖x̃l−x̂l‖2>0} ‖x̃j − x̂j‖2;
7. d = x̃f − x̂f ;
8. θ = B−1d;
9. l = arg minj∈{p|θp 6=0} |θj |;

10. Bout = recurseTI(Bl,S); return Bout;
11. end

the lattice defined by B, the recursion is terminated (line 3). Other-
wise, one of the vectors z = x̃f that does not belong to L is selected
as the one that minimizes the distance from the corresponding vertex
(line 6), so as to minimize the length of the new basis vector d. The
intuition here is to capture a short vector that cannot be represented
by the current lattice, and to modify the current basis in such a way
that, upon convergence, it can be represented. Figure 1(b) shows the
selected vector z = x̃3, being the only one not belonging to L(B),
as well as the corresponding difference vector d.

Then, the updated basis is constructed by replacing one of the
columns of B with d. The choice of the new basis among the set
of (up to) N candidate bases Bi (line 9) is to select the one that
leads to the smallest lattice determinant, after excluding those that
do not have rank N . From Cramer’s rule, it follows that det(Bi) =
θidet(B), where θ = B−1d is the expansion of d in the basis B.
Hence, we replace the l-th column of B, which is the one corre-

sponding to the entry of θ with the least strictly positive absolute
value. Figure 1(c) shows the updated basis, obtained replacing one of
the basis vectors with the difference vector identified in Figure 1(b).

The function recurseTI is recursively invoked (line 10), pass-
ing the updated basis as input. The basis shown in Figure 1(c) is
reduced, as illustrated in Figure 1(d). In this case, neither x̃2 nor x̃3

belong to the lattice defined by the current basis. The vector x̃3 is se-
lected (in this case, the tie between x̃2 and x̃3 is broken arbitrarily),
and the corresponding difference vector is used to update the basis,
as shown in Figure 1(e). A further recursive step is needed, since x̃2

does not belong to the current lattice, so as to lead to the solution
illustrated in Figure 1(f), when the recursion can be terminated since
all vectors belong to the lattice.

5. ANALYSIS OF CONVERGENCE

In this section we briefly illustrate a summary of the theoretical
analysis of the proposed method. More details, including complete
proofs are made available at [27].

Let B(0) denote the initial estimate of a basis of the lattice. Let
B(r) denote the estimate obtained after the r-th call of the recur-
sive function recurseTI. It is possible to prove the following
lemma [27]:

Lemma 5.1. |L(B(r+1))| ≤ |L(B(r))|, with equality if and only if
S ⊂ L(B(r)) = L(B(r+1))

Intuitively, Lemma 5.1 indicates that the volume of the funda-
mental parallelotope associated to the current lattice decreases with
the recursion depth r, until convergence is achieved. Let R denote
the smallest integer such that |L(B(R))| = |L(B(R+1))|. That is,
R is the number of steps needed to achieve convergence. With this
lemma, it is possible to prove the following theorem [27]:

Theorem 5.2. Algorithm 1 converges to the solution of (3).
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Fig. 2. Empirical probability of success of Algorithm 1 in identi-
fying the coder parameters as a function of the number of observed
vectors P and the dimensionality of the embedding vector space N .

Proof. (sketch) LetL∗ denote the solution of (3), i.e., the lattice with
maximum volume that includes all observed vectors S. We need to
prove that L(B(R)) = L∗.

First, we prove that |L(B(R))| cannot decrease beyond |L∗|, i.e.,
|L∗| ≤ |L(B(R))|. To this end, let L(B(R−1)) denote the lattice
obtained at the iteration just before convergence. Hence, there is
at least one observed vector x̃ ∈ L∗ such that x̃ /∈ L(B(R−1)).
Lemma 5.1 establishes that |L(B(R))| < |L(B(R−1))|. Using the
same arguments as for the proof of Lemma 5.1, it is also possi-
ble to show that |L(B(R))| ≥ (1/m)|L(B(R−1))| = |L∗| where
|L(B(R−1))|/|L∗| = m.

To prove that |L(B(R))| = |L∗|, it remains to be shown that
cannot be |L(B(R))| > |L∗|. Indeed, if this were the case, L(B(R))
would be the optimal solution of (3), since it includes all observed
points S and has volume larger than |L∗|.

In [27], further analytical results are presented, which are related
to two main aspects: i) the probability of converging to the lattice
Lx; ii) the rate of convergence of the algorithm. In Section 6, these
aspects are investigated experimentally.

6. EXPERIMENTAL ANALYSIS

The solution L∗ of problem (3) computed by the algorithm might
converge to a sub-lattice of the original lattice Lx, i.e., L∗ ⊆ Lx.
This is the case when all the observed points lie on a sub-lattice of
Lx. Let pfail(N,P ) denote the probability of failing to detect the
underlying lattice Lx of rank N , when P points are observed. Then,
psucc(N,P ) = 1 − pfail(N,P ). A failure occurs whenever all P
vectors fall in any of the sub-lattices of index m. In this section,
we empirically evaluate the probability of success. A full analytical
derivation of a lower bound on psucc(N,P ) is detailed in [27].

To this end, we generated data sets of N -dimensional vec-
tors, whose elements are sampled from a Gaussian random variable
N (0, σ2). We considered the adverse case in which the elements are
independent and identically distributed. Therefore, the distribution
of the vectors is isotropic and no clue could be obtained from a
statistical analysis of the distribution. Without loss of generality, we
set σ = 2, W = I and ∆i = 1, i = 1, . . . , N . The same results
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Fig. 3. Total number of recursive calls to recurseTI as a function
of the dimensionality of the spaceN and the strategy adopted to visit
the observed vectors.

were obtained using different transform matrices and quantization
step sizes. Figure 2 shows the empirical probability of success when
N = 2, 4, 8, 16, 32, 64, and the number of observed vectors P is
varied, averaged over 100 realizations. As expected psucc(N,P ) = 0
when the number of vectors P does not exceed the dimensionality of
the embedding vector space, i.e., P ≤ N . Then, as soon as P > N ,
psucc(N,P ) grows rapidly to one, when just a few additional vec-
tors are visited. It is interesting to observe that the probability of
failure/success depend solely on the difference P − N . Hence,
the number P of observed vectors needed to correctly identify the
underlying lattice grows linearly with the dimensionality N of the
embedding vector space, despite the number of potential lattice
points grows exponentially with N . In particular, it is possible to
observe that, when N > 2, the number of observed vectors needs to
exceed by 6-7 units the dimensionality, regardless of N .

At the same time, it is interesting to empirically evaluate the
complexity of the proposed method. Figure 3 shows the total number
of recursive calls needed to converge to the solution of (3). Note that
when a large enough number P of vectors is observed, the algorithm
converges to the correct lattice Lx. Thus, visiting further vectors
does not increase the number of recursive calls, since the base step
of the recursion is always met. Figure 3 shows two cases, that differ
in the way the set of observed vectors is visited, i.e., randomly, or
sorted by their norms in ascending order. In both cases, the number
of recursive calls grows linearly with N . For an analytical study on
the rate of convergence, the reader is referred to [27].

7. CONCLUSIONS

In this paper we have shown how it is possible to exactly identify
the parameters of a transform coder, given a limited set of P trans-
form decoded vectors embedded in aN -dimensional space. Surpris-
ingly, it is possible to successfully identify them when P > N and
the probability of failure decreases rapidly to zero when P −N in-
creases. While we focused on the noiseless case, it is possible for the
signals to be processed by multiple cascaded transforms, thus intro-
ducing noise in the observed output. Extending the proposed method
to noisy scenarios where the vectors do not exactly lie on lattice
points represents an interesting research avenue and is the subject of
current investigations.
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