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ABSTRACT
The nonlinear Fourier transform (NFT; also: direct scattering
transform) is discussed with respect to the focusing nonlinear
Schrödinger equation on the infinite line. It is shown that many of
the current algorithms for numerical computation of the NFT can
be interpreted in a polynomial framework. Finding the continuous
spectrum corresponds to polynomial multipoint evaluation in this
framework, while finding the discrete eigenvalues corresponds to
polynomial root finding. Fast polynomial arithmetic is used in
order to derive algorithms that are about an order of magnitude
faster than current implementations. In particular, an N sample
discretization of the continuous spectrum can be computed with
only O(N log2N) flops. A finite eigenproblem for the discrete
eigenvalues that can be solved in O(N2) is also presented. The
feasibility of this approach is demonstrated in a numerical example.

Index Terms— Nonlinear Fourier Transform, Inverse Scattering
Transform, Schrödinger Equation, Optical Fiber Communication

I. INTRODUCTION

The term nonlinear Fourier transform (NFT) commonly refers
to a family of transforms that decompose a time-domain signal into
nonlinearly interacting waves [1]. (Another common denotation is
direct scattering transform.) In contrast to the common Fourier
transform, which is restricted to superpositions of sinusoidal waves,
the NFT decomposes a signal with respect to richer sets of non-
linearly interacting waves such as, e.g., cnoidal waves or solitons
(“particle-like waves”). The details of the decomposition depend on
the actual transform considered, and are specified by the evolution
equation (a special type of differential equations) that governs the
signal. In this paper, we consider the NFT with respect to the
focusing nonlinear Schrödinger equation (NLS) on the infinite line,

i qx = qtt + 2|q|2q. (1)

Here, q(x, t) is a real signal that depends on a real spatial
coordinate x ≥ 0 as well as a real temporal coordinate t ∈ R.
The subscripts denote partial derivatives. The boundary conditions
are specified for |t| → ∞. The focusing NLS is of special interest
in optical communications because it describes the evolution of a
complex waveform envelope in Raman-amplified optical fiber.

Yousef and Kschischang [2], [3], [4] have recently proposed
a communications system based on the NFT. Their proposal is
inspired by the orthogonal frequency division multiplexing (OFDM)
technique [5], in which information is embedded in the phases and
amplitudes of certain eigensignals of the linear channel. The Fourier
transform is used at the receiver in order to extract the embedded

This work was supported in part by the German Research Foundation
(DFG) under Grant WA 3139/1-1, and in part by the U. S. Office of Naval
Research Grant N00014-12-1-0767.

information from the incoming signal. Note that the approach of
Yousef and Kschischang is different from optical OFDM [5], in
which the nonlinear effects of the fiber are considered to be nui-
sances that have to be suppressed. Instead, they propose to exploit
the nonlinearities in order to transmit information. The success of
OFDM is rooted to a large extend in the fast Fourier transform
(FFT) algorithm [6], which can compute a discretization of the
Fourier transform in N samples with only O(N logN) operations.
The lack of a comparably fast nonlinear Fourier transform is a
major open problem [3, Sec. VII], [7, p. 63], [8, Sec. V].

In this paper, we propose several fast NFTs. We only discuss the
NFT with respect to the NLS on the infinite line, but it should be
straightforward to apply our approach to other NFTs on the infinite
line. Periodic boundary conditions are yet to be investigated.

II. THE NONLINEAR FOURIER TRANSFORM
We will now sketch the derivation of the NFT and its most

important properties. The mathematical foundations of the NFT
are quite involved. Therefore, for the sake of brevity, we refer the
reader to [2], [7], [9] and [10] for details.

Consider a signal q(x, t) governed by the NLS (1). We shall fix
x because the NFT of q(x, t) is (up to some factors) independent
of x, and use q to denote the function t 7→ q(x, t) henceforth. Let
us associate q with the eigenproblem Lv = λv, where

L := i

[
∂
∂t

−q(t)
−q(t)∗ − ∂

∂t

]
is the Lax operator and t 7→ v(t, λ) is an eigenfunction. The eigen-
problem is equivalent to solving the linear differential equation

vt(t, λ) =

[
− iλ q(t)
−q(t)∗ iλ

]
v(t, λ) (2)

for v(·, λ). The special case q ≡ 0 of (2) can be solved in closed
form for any λ. Let q(t) → 0 rapidly as |t| → ∞. Then, we can
use the exact solutions for the case q ≡ 0 as boundary conditions:

v(t→ +∞, λ)→
[

0

eiλt

]
, v(t→ −∞, λ)→

[
e− iλt

0

]
.

(3)
Fix any eigenvalue λ ∈ C. We consider the two unique solutions

v±(t, λ) =

[
v±1 (t, λ)
v±2 (t, λ)

]
,

of the differential equation (2) that correspond to the two boundary
conditions (3) at ±∞. Their adjoints are defined by

ṽ±(t, λ) :=

[
v±2 (t, λ)∗

−v±1 (t, λ)∗

]
.

The eigenspace Eλ of the Lax operator L is two-dimensional, and
each of the two pairs (v±(·, λ), ṽ±(·, λ)) forms a basis of it. Thus,
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there exists a unique matrix

S(λ) =

[
s11(λ) s12(λ)
s21(λ) s22(λ)

]
,

the so-called scattering matrix, such that[
v−i (t, λ)
ṽ−i (t, λ)

]
= S(λ)

[
ṽ+i (t, λ)
v+i (t, λ)

]
(i = 1, 2).

In particular, v−1 (t, λ) = s11(λ)ṽ
+
1 (t, λ) + s12(λ)v

+
1 (t, λ). By

letting t→ +∞ in (3), we find that

a(λ) := s11(λ)← v−1 (t, λ) eiλt (t→ +∞). (4)

Similarly, we find that

b(λ) := s12(λ)← v−2 (t, λ) e− iλt (t→ +∞), (5)

as well as s21(λ) = b(λ∗)∗ and s22(λ) = −a(λ∗)∗.
This construction can be carried out for any eigenvalue λ of the

Lax operator L. It can be shown that any real λ is an eigenvalue of
L. The scattering matrix λ 7→ S(λ) turns out to be analytic on the
real line and can be extended analytically into the upper half-plane.
The non-real spectrum of L is symmetric with respect to the real
line, and the non-real eigenvalues of L correspond exactly to the
roots of a. Since a is analytic as well, the non-real eigenvalues of
L must be isolated and countable.

Now, the nonlinear Fourier transform of the signal q consists of
two components. The first component is the continuous spectrum

q̂ : R→ C, q̂(λ) := b(λ)/a(λ).

It corresponds to the radiation components. The continuous spec-
trum of αq, α > 0, converges towards the usual Fourier transform
as α↘ 0. The second component is the discrete spectrum:

q̃ : {λ̃j ∈ C+ : a(λ̃j) = 0} → C, q̃(λ) := b(λ)/aλ(λ).

Here, we are interested in the eigenvalues λ̃j as well as in the
corresponding values q̃(λ̃j). The discrete spectrum represents the
soliton components of the signal.

III. NUMERICAL COMPUTATION: STATE OF THE ART
In this section, we review the state of the art in the numerical

computation of a(λ) and b(λ). We will not discuss computation of
the derivative aλ(λ) because this can be achieved with a straight-
forward extension of the discussed methods [3, Sec. IV.A]. Any
method for computing a(λ) and b(λ) can be used to evaluate the
continuous spectrum q̂(λ) = b(λ)/a(λ). The discrete eigenvalues
λ̃j can be found by applying iterative root-finding such as Newton’s
method to a(λ). There are also matrix methods for finding the λ̃j
based on finite-dimensional approximations of the eigenproblem
Lv = λv [3, Sec. IV.B]. We do not discuss them here because
that is not necessary for the derivation of the fast algorithms.

III-A. Basic Idea1

The basic idea is to exploit (4) and (5). We choose T1 and T2

sufficiently2 close to −∞ and +∞, respectively. Then, for any λ:

1Almost all algorithms in the literature seem to make this ansatz. A
notable exception is the recent paper of Olivier et al. [11], which replaces
the boundary conditions at infinity with periodic boundary conditions for
a very large period. The resulting problem then is to be solved using the
Floquet-Fourier-Hill method of Deconinck and Kutz [12].

2What is sufficient here depends on the decay of q. We are currently not
aware of any formal expression that quantifies the approximation error.

1) Replace the second boundary condition in (3) with
v1(T1, λ) = e− iλT1 , v2(T1, λ) = 0.

2) Solve the differential equation (2) numerically for v(T2, λ).
3) Use a(λ) :≈ v1(T2, λ) e

iλT2 , b(λ) :≈ v2(T2, λ) e
− iλT2 .

Hence, the main task is to solve (2) numerically.

III-B. Solution of the Differential Equation (2)
Several approaches have been discussed for the numerical solu-

tion of Equation (2) in the literature. We begin with some notation:

ε := (T2 − T1)/(N − 1),

v[n, λ] := v(T1 + ε(n− 1), λ),

q[n] := q(T1 + ε(n− 1)),

P[n, λ] :=

[
− iλ q[n]
−q[n]∗ iλ

]
.

With this notation, the goal becomes to find v[N,λ] from v[1, λ].
Forward Discretization [3], [13]: This is a finite difference

method. The derivative in (2) is approximated by (v[n + 1, λ] −
v[n, λ])/ε, and the right side by P[n, λ]v[n, λ]. One can then solve
for v[n+ 1, λ]:

v[n+ 1, λ] = (I+ εP[n, λ])v[n, λ].

Crank-Nicolson Method [3]: This is another finite difference
method. The derivative in (2) is again replaced with (v[n+1, λ]−
v[n, λ])/ε, but the right side now becomes (P[n+1, λ]v[n+1, λ]+
P[n, λ]v[n, λ])/2. Solving for v[n+ 1, λ] gives

v[n+ 1, λ] =
(
I− ε

2
P[n, λ]

)−1 (
I+

ε

2
P[n, λ]

)
v[n, λ].

Boffetta-Osborne Method [3], [9], [14]: Fix any interval [T1 +
(n−1)ε, T1+nε), and approximate q(t) in (2) by q[n]. The result
is a first order linear differential equation. With expm denoting
the matrix exponential, its solution can be given in closed-form:

v[n+ 1, λ] = (I+ expm(εP[n, λ]))v[n, λ].

Ablowitz-Ladik Discretization [3], [13], [15]: The diagonal
entries of the matrix I + εP[n, λ] in the forward discretization
are 1∓ ε iλ. They can be approximated by z± = e∓ i ελ. Then,

v[n+ 1, λ] =

[
z εq[n]

−εq[n]∗ z−1

]
v[n, λ].

Typical properties of the continuous NLS like the emergence of
solitons can be observed with this discretization for any ε (instead
of sufficiently small ε only).

Normalized Methods: The transition matrices in these methods
can be scaled by non-zero factors (independent of λ) without chang-
ing the approximations of the NFT. Normalization can improve
numerical properties. For example, the factor 1/

√
1 + ε2|q[n]|2

leads to a normalized Ablowitz-Ladik method [3, Sec. III.E].
Other Methods: We omit the central difference method [3] and

Runge-Kutta methods [3], [9] because of the page limit.

IV. OUTLINE OF THE FAST POLYNOMIAL APPROACH
In this section, we outline a polynomial framework that unifies

the numerical methods for the computation of a(λ) and b(λ)
discussed in the previous section. Later, this will enable us to
exploit fast polynomial arithmetic. From an abstract point of
view, the numerical methods correspond to evaluating a mapping
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v[N,λ] = f(λ) (which is the outcome of the chosen iteration).
Our main observation is that for all but one of the methods, the
mapping f is of a special form. As we shall see below, we have

f(z) = v[N, z] =
S(z)

d(z)
v[1, z], (6)

where z = φ(λ) is a suitable coordinate transform, and

S(z) :=

N∏
n=1

S[n, z], d(z) :=

N∏
n=1

d[n, z]

for matrix-valued polynomials z 7→ S[n, z], and scalar polynomials
z 7→ d[n, z]. By construction, also S(z) and d(z) are polynomials.
Now, evaluation of q̂(λ) at N points is a multipoint evaluation
problem, while finding the eigenvalues λ̃j is a root-finding problem.

We close this section with a summary of how the numerical
methods in Sec. III-B fit into the polynomial formulation (6):

Euler’s Method: φ(λ) = λ, d[n, z] = 1, S[n, z] = I+ εP[n, λ]
Crank-Nicolson: φ(λ) = λ,

d[n, z] = det
(
I− ε

2
P[n, z]

)
= 1− ε2

4
(z2 + |q[n]|2),

S[n, z] = d[n, z]
(
I− ε

2
P[n, z]

)−1 (
I+

ε

2
P[n, z]

)
=

[
d[n, z]− ε i z εq[n]
−εq[n]∗ d[n, z] + ε i z

]
.

Boffetta-Osborne: This method does not fit into (6) because
S(z)/d(z) is a rational matrix, but the matrix exponential is ir-
rational. However, we can approximate expm. A truncated Taylor
series gives: φ(λ) = λ, d[n, z] = 1, S[n, z] =

∑M
m=0

εn

n!
P[n, z]n

[16, p. 9]. Another option is “scaling and squaring” of the first-
order Taylor approximation: φ(λ) = λ, d[n, z] = 1, S[n, z] =
(I + ε

M
P[n, z])M [16, p. 12]. In both cases, increasing M will

improve the approximation at the cost of higher operation counts.
Ablowitz-Ladik: φ(λ) = i e− iλε, d[n, z] = z, and

S[n, z] =

[
z2 εq[n]z

−εq[n]∗z 1

]
.

The normalized Ablowitz-Ladik method is obtained if S[n, z] is
replaced with S[n, z]/

√
1 + ε2|q[n]|2.

V. FAST POLYNOMIAL ARITHMETIC
In this section, we review some results on fast polynomial

arithmetic that are needed to implement our fast NFT as outlined
in the previous section. We will always assume that polynomials
are given with respect to the standard monomial basis.

Fast Product of Two Polynomials: The FFT can be used to com-
pute the product p = qr of two polynomials q(z) =

∑D
n=0 qnz

n

and r(z) =
∑D
n=0 rnz

n in O(D logD) operations. As we are us-
ing a monomial basis representation, this means that the algorithm
finds the pn such that p(z) =

∑2D−1
n=0 pnz

n from the qn and rn.
Fast Product of N Polynomials: The product

∏N
n=1 an of

N numbers a1, . . . , aN can be found using only O(logN)
multiplications with the following recursion:

∏N
n=1 an =

(
∏bN/2c
n=1 an)(

∏N
n=bN/2c+1 an). The same idea can be used to

find the product of N polynomials. See Alg. 1 for an explicit,
non-recursive implementation. The product of two polynomials of
degree at most D can be found with O(D logD) operations with
the help of the FFT (see above). The degrees of the polynomials

Algorithm 1 Fast product of N polynomials
Input: N polynomials p1, . . . , pN of degree at most K
Outp.: p =

∏N
n=1 pn

• while N ≥ 2 do:
– Nm ← N mod 2
– N ← N−Nm

2

– for n = 1, . . . , N −Nm do: pn ← p2n−1p2n
– if Nm 6= 0 then: pN ← p2N−1

• p← p1

double at most in each iteration of the algorithm, but the number
of products that we have to form halves at least. Thus, the cost is
O
(
N
2
K logK

)
for the first iteration, O

(
N
4
2K log(2K)

)
for the

second, O
(
N
8
4K log(4K)

)
for the third, and so on. We perform

at most log2(N) iterations. Hence, the cost of each iteration is at
most O

(
NK log(2log2 NK)

)
= O (NK log(NK)). We arrive at

a total cost of O (NK log(NK) logN).
Fast Multipoint Evaluation: The fastest way to evaluate a poly-

nomial p of degree D at only one point z is Horner’s method, which
requires O(D) operations. Surprisingly, it is possible to evaluate
p at D points z1, . . . , zD simultaneously with only O(D log2D)
operations [17]. However, the naive approach requires repeated
polynomial divisions which may cause numerical problems. Pan et
al. [18] presented a Vandermonde matrix approach that avoids poly-
nomial divisions, but numerical problems may still occur. Hence,
specialized fast algorithms should be used whenever possible. For
example, the FFT [6] can be used for equispaced grids on the
complex unit circle. The chirp transform [19] can be used for
certain arguments on a spiral in the complex plane, and the discrete
Laplace transform [20], [21] can be used for arbitrary points on the
open real interval (0, 1).

Root-Finding Via Matrix Methods: In these methods, a compan-
ion matrix is constructed such that the eigenvalues of that matrix are
equal to the roots of the polynomial. Then, e.g., the QR algorithm
is used to find the eigenvalues. The advantage of this method is that
we do not need any a-priori knowledge about the eigenvalues. The
disadvantage used to be its computational costs of O(D3), where
D is the degree of the polynomial. However, recently several fast
algorithms that exploit the special structure of companion matrices
have been proposed [22], [23], [24], [25]. Their computational costs
are only O(D2). While the stability of these fast matrix methods
has not been proven yet, numerical experiments look promising.

Root-Finding Via Search Methods: Search methods assume that
we have initial guesses for the roots and then iteratively refine
them. Their advantage is that a-priori knowledge on the number
and approximate location of the roots can be integrated. Newton’s
method is a popular example. The cost of one iteration is usually
O(D), but giving an overall complexity estimate is difficult because
it depends on the initial guesses and the number of iterations
necessary. The best upper bound on the number of operations nec-
essary to find all roots (assumed simple and sufficiently separated)
using Newton’s method without a-priori knowledge known to the
authors is O(D3 log3D) [26]. Note that fast polynomial multipoint
evaluation is required to establish this bound. Hence, the numerical
stability of the method is not assured. For the case with a-priori
knowledge, very fast algorithms have recently been proposed in
[27]. Their numerical stability is yet to be explored.
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Algorithm 2 Fast computation of the continuous spectrum
Input: q[1], . . . , q[N ], T1, T2

Outp.: q̂[1], . . . , q̂[N ]

• Use a fast method to find the monomial representation of S
• Use a fast method to find the monomial representation of d
• For n = 1, . . . , N do: λn ← T1+(n−1)T2−T1

N−1
, zn ← φ(λn)

• Use fast multipoint evaluation to find S(z1), . . . ,S(zN )
• Use fast multipoint evaluation to find d(z1), . . . , d(zN )
• For n = 1, . . . , N do:

– v[N,λn]← S(zn)
d(zn)

v[1, λn]

– q̂[n]← e−2 iλnT2 v2[N,λn]
v1[N,λn]

Algorithm 3 Fast computation of the discrete eigenvalues
Input: q[1], . . . , q[N ], T1, T2

Outp.: λ̃1, . . . , λ̃M

• Use a fast method to find the monomial representation of S
• Use a fast method to find the roots r1, . . . , rL of [S]1,1

(i.e., the upper left element of S)
• For j = 1, . . . , L do: λ̃j ← φ−1(rj)

VI. FAST COMPUTATION: CONTINUOUS SPECTRUM
Our general fast approach to computing the continuous spectrum

is given in Alg. 2. It can be run for any choice of φ(λ), d[n, z], and
S[n, z] given in Sec. IV. A fast O (NK log(NK) logN) method
to perform the monomial representations of S and d has been
given in Sec. V. Fast O

(
NK log2(NK)

)
methods for multipoint

evaluation have also been discussed. Note that the upper bound
K on the degrees of z 7→ d[n, z] and z 7→ S[n, z] can be
chosen small for all methods.3 Since the coordinate transform φ is
O(1) in all considered cases, the overall complexity of our meta-
algorithm amounts to O

(
NK log2(NK)

)
operations. This is about

a magnitude faster than the naive implementation, which is O(N2).

VII. FAST COMPUTATION: DISCRETE SPECTRUM
Our general fast approach to computing the discrete eigenvalues

λ̃j is given in Alg. 3.4 We do not discuss finding the q̃(λ̃j) here.
Once the eigenvalues are known, computation of the q̃(λ̃j) reduces
again to polynomial multipoint evaluation. We omit the details
because of the page limit. As already discussed in Sec. VI, we have
a complexity of O (NK log(NK) logN) for finding the monomial
representation of S. The complexities of various fast root finding
procedures have been discussed in Sec. V. Using the algorithm
of [25], we obtain a fast O(N2) matrix method. This is again a
magnitude faster than naive matrix methods, which are O(N3) [3].
(A comparison with specialized search methods like [3, Alg. 1] is
difficult (see Sec. V), and beyond the scope of this paper.)

VIII. NUMERICAL EXAMPLE
We have implemented two instances of our meta-algorithms,

Alg. 2 and Alg. 3, for the normalized Ablowitz-Ladik method in

3Euler: 1; Crank-Nicolson, Ablowitz-Ladik: 2; Boffetta-Osborne: M
4Note that d(z) has finite roots in the C.-N. method. In that case, any

computed eigenvalue rj that coincides with a root of d(z) should be
removed in an additional last step (counting multiplicities) because the
approximation of a(z) satisfies ã(z) = e−λ(T1+T2)[S]1,1(z)/d(z). The
roots of d(z) can be found in O(NK2) from the roots of the d[n, z].
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Fig. 1. Numerical Experiment

MATLAB5 in order to demonstrate the feasibility of our proposed
polynomial approach. We implemented the fast product of N
polynomials (Alg. 1) using the cconv routine from the Signal
Processing Toolbox. The routine czt (a chirp transform) from the
same toolbox was used for fast multipoint evaluation. Finally, we
used a fast polynomial root finder as described in [25]. We compare
these two algorithms with a naive MATLAB implementation of the
normalized Ablowitz-Ladik method for the continuous spectrum
as well as the Ablowitz-Ladik matrix method [3, IV.B.2] for the
discrete spectrum, and apply them to a Satsuma-Yajima pulse [3],
[28] for various numbers of samples N . The fast methods gave the
same results (up to some different spurious, well-separated discrete
eigenvalues) as the standard methods, which was confirmed by
examining the relative differences (continuous spectrum) and by
visual inspection (discrete spectrum), respectively. Fig. 1 shows
the runtimes per sample. While the absolute values may not be
representative because of implementation details, we see that the
runtimes per sample of our fast algorithms are approximately con-
stant (continuous spectrum) and linear (discrete spectrum), which
corresponds to approximately linear and quadratic total runtimes,
respectively. In contrast, the complexities of the standard methods
have quadratic and cubic total runtimes, respectively.

IX. CONCLUSION
A unified polynomial framework for the numerical computation

of the NFT with respect to the focusing NLS on the infinite line has
been presented. In this framework, computation of the continuous
spectrum corresponds to polynomial multipoint evaluation, while
finding the discrete eigenvalues corresponds to polynomial root
finding. Fast polynomial arithmetic can be used to solve these prob-
lems about an order of magnitude faster than previous algorithms.
The practical relevance of the framework has been demonstrated
with an implementation of two fast Ablowitz-Ladik methods.

We are currently working on fast implementations for the other
methods. First results indicate that more severe finite precision
effects have to be taken care of with these methods because the
polynomials are evaluated on the real line instead of the unit circle.
We are also trying to extend our framework to other NFTs.

5MATLAB is a registered trademark of The Mathworks, Natick, MA.
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