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ABSTRACT

With the growing application of high order modulation tech-
niques, the mitigation of the non-linear distortions introduced
by the power amplification, has become a major issue in
telecommunication. More sophisticated techniques to coun-
teract the strong generated interferences need to be inves-
tigated in order to achieve the desired power and spectral
efficiency. This work proposes a novel approach for the def-
inition of a transmitter technique (predistortion) that outper-
forms the standard methods with respect to both performance
and efficiency.

Index Terms— Predistortion, Non-linear channel, Poly-
nomial channel model solution.

1. INTRODUCTION

Signal power amplification is necessary to achieve the desired
SNR at the receiver. However the process is hardly linear due
to the inherent characteristics of the amplifier which includes
the saturation effect [1]. This non-linear amplification results
in inter-symbol interfere (ISI) at the receiver thereby causing
degradation [10]. On the other hand, efficient power ampli-
fication requires the amplifier to be operated very close to its
saturation region where non-linear effects are stronger. To-
wards exploiting higher power gain, mitigating the non-linear
effects of power amplification has been given a priority in
both satellite [2] and terrestrial communications [4]. With
the increasing and widespread use of high order modulation
schemes towards achieving higher throughput, the mitigation
of the non-linear interference generated by the power ampli-
fier has become even more challenging. Multilevel modula-
tion schemes are spectrally efficient but excite severe non-
linear distortions due to the inherent high peak to average
power ratio (PAPR) typical of the non-constant envelope sig-
nals (e.g. QAM and APSK). Proper countermeasures need to
be put in place to guarantee the required throughput and the
power efficiency. In most applications, it is often more desir-
able to counteract the generated non-linear interferences at the

One of the most consolidated approaches defines the pre-
distortion as a nonlinear function that approximates the equiv-
alent channel inverse function. Such an approach is parater-
ized by a certain number of kernel coefficients. A large num-
ber of techniques belong to this channel inverse predistortion
function category, for e.g., analytic channel inverse function
[3], Volterra series [4], memory polynomials [5, 6, 7] and or-
thogonal polynomials [8, 9]. The non-parametric approaches
for predistortion elaborated in literature, rely on iterative nu-
merical optimization techniques and do not exploit directly
any channel information [10, 11].

In this work we propose a novel non-parametric data pre-
distortion method based on the point-wise solution of the non-
linear channel equation. The new technique does not suffer of
the typical inaccuracies of the channel inverse based predis-
tortion techniques [3]-[9], exploits channel model informa-
tion in a better way compared to [10, 11] and provides sig-
nificant gain in performance. A variation of the method suit-
able for reduced complexity implementation is also developed
showing negligible performance loss.

The rest of the paper is organized as follows: Section
2 defines the non-linear channel model, Section 3 describes
the novel predistortion technique, Section 4 provides a tai-
lored version of the introduced technique suitable for an ef-
ficient implementation, Section 5 numerically compares the
designed techniques with memory polynomial predistortion
and some conclusions are drawn in Section 6.

Notations : * represents complex conjugation and E is the
ensemble average.

2. SYSTEM MODEL

A general communication chain consisting of a non-linear
channel with memory is represented in Fig. 1. The constel-
lation symbols, {a,,}, drawn from a M- sized constellation
set Sps are pre-distorted to obtain the transmitted symbols
{zn}. The non-linear channel contains linear transmit and
receive filters (pulse shaping filter or Input/Ouptut multiplex-
ing filters) and a non-linear amplifier. Denoting H,,;(-) as the
channel non linear function, p, as the noise and X,, i =

transmitter side with specific signal pre-processing technique [%n, ..., %n_x] as a stacking of transmitted symbols, the re-
generally known as predistortion. Such a processing does not  .qived symbol at nth instance, r,,, can be expressed as

entail a change in the existing user terminals, thereby making

it market attractive. T = Ho(Xn00) + fin (D
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Fig. 1. Non-linear Channel: DPD denotes Digital Predistor-
tion block

H,,;(-) can be expressed using the Volterra expansion [12] as

e s P 2p
Z Z hl(cz),...,kzp Hﬂfn—k-j H [Tn_r,]" ()
=0 (ko,...,k2p)=0 j=0 i=p+1

Here h,(f:] ) kap denotes the Volterra kernel coefficients. The
full Volterra model is a highly complex representation of the
channel function due to the presence of all cross terms {ko; }.
A reduced complexity version of H,,(+) is the memory poly-
nomial that does not include all the cross terms [13]

Hnl(Xn,oo) ~ Z Zh]ip)xn—k|xn—k|p- 3
p=0 k=0
(even)
In general, both models ( (2) and (3)) include only odd poly-
nomial terms in x,, generating the relevant in-band distortion.
Concerning channel estimation, polynomial channel models
of (2) and (3) are linear equations in their kernel parameters

ko....k,, Because of this linear relation, the estimation of
yereyN2p

h,(jz )k2p is a linear least-square (LS) problem that can be
solved using standard training based techniques [13]. To fo-
cus on the predistortion technique, we assume the channel
model parameters to be fixed and that they have been com-

puted off-line.

3. NON-PARAMETRIC PREDISTORTION BASED
ON CHANNEL MODEL

Towards a low-complexity implementation, we use the sim-
plified channel model of (3) limiting channel model degree to
D + 1 and memory to K in (3). We henceforth consider

D K
Hnl(XmK) = Z Zhép)xn—k‘xn—k|p~ (€]
p=0 k=0
(even)
The ideal predistortion function would guarantee the mini-
mization of the error between the received symbols r,, (1) and
the intended transmitted symbols a,,. Such a symbol level ap-
proach is not feasible since the transmitter is not privy to the
received symbols. Instead, we consider,

zp, = argmin {|Hyu (X, k) — an|2}. 5)

Ty, 0<|zn |2 <Py

The power constraint in (5) arises from the power constraint
served by the transmitter. It also helps to avoid infeasible
solutions arising due to the finite degree channel model ap-
proximation.

Clearly the minima of (5) is obtained when H,; (X, k) =
ay, if the resulting solution satisfies 0 < |z, \2 < P,. Towards
solving H,,;(X,, k) = ay, using (4), we obtain,

D K
ap = Z Z h]i?)xnfk|mn7k|p' (6)
p=0 k=0
(even)
Equation (6) is non-linear with memory in the complex vari-
able z,, that can be transformed in two distinct equations in
real variables: a polynomial equation for the amplitude of x,,
and a linear equation for the phase. These two equations will
be derived in the following.

3.1. Amplitude of the Predistorted Symbol

Equation (6) can be rewritten as:

D
an = Y b wlral? (7)
p=0
(even)
D K
&n = Qn — Z Zhép)xn—k‘xn—k‘p (8)
p=0 k=1

(even)

Applying the magnitude operator on both sides of (7), we ob-
tain a (D + 1)th degree real polynomial equation in |z,,|?:

D D

Z Z h(()pl)[h(()pz)]*‘l‘n|2+pl+p2 _ ‘an‘Q. )

p1=0 p2=0

(even) (even)
Assuming d,, to be known, we can find the optimal |z, |? as
the positive solution of (9). In order to obtain a solution we
need to find the roots of a real polynomial of degree (D + 1).
Closed form polynomial solutions are derived up to the third
degree and numerical evaluation is applied for higher degrees.
If no valid solutions to (9) exist or the resulting solution does
not satisfy 0 < |z,|?> < P,, we redefine the amplitude |z,,|?
as a solution of (9)

a? = argmin {(f(leal”) = @)’} (10)
0<|zn|2< Py
D D

Fzal?) = 37 37 > lea PP
p1=0 p2=0

(even) (even)

The problem defined in (10) can be solved finding the local
maximum of the polynomial function f(|z,|?) under the con-
dition 0 < |z,,|*> < P, using first and second order deriva-
tives. Alternatively, a purely numerical approach would re-
quire a search for the minimum of (f(|z,|?) — |a,|?)? in the
closed interval 0 < |z,,|? < P.
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3.2. Phase of the Predistorted Symbol

Once we obtain a valid solution for (9), we can derive the
phase of z,, by using the phase relations of (7) as,

D
Lan = Lin— 2 || (12)
p=0
(even)

The above process generates a predistorted symbol solv-
ing (12) and (9) [or (10)]. This requires information about a,,,
which in turn, depends on previous predistorted symbols. As
aresult, z,, needs to be computed for each n and the complex-
ity of such a process is very high. We now consider a reduced
complexity approach that allows for off-line calculation of x,,
and use it as a Look Up Table (LUT).

4. REDUCED COMPLEXITY IMPLEMENTATION

The information about the previous symbols is the cause of
increased complexity. Towards implementing the process as
a low complexity LUT, we choose to approximate x,_j by
their centroids in (8). Centroids of the predistorted symbols
are defined as the solution of

Z hP 2, |27, (13)

(€1m77)

Ela,|an] =

where the averaging is performed over the previous trans-

mitted symbols ({z,,—x} or equivalently {a,_;}) and Z,

is defined as the centroid of x,. For obtaining E[a,|a,],

we take recourse to the numerically observed fact that
D K

E[Z 0 Shoi i @nklin-slPlan] = 0.

(even)

and (8) leads to,

Using this

Ela,|an] = an (14)

This approximation allows us to define centroids as a solution
of an auxiliary (D + 1)th degree equation in (15) that can be
solved as described in Section 3

D
=Y hPa |z (15)
(even)

Solving (15) allows to map, off-line, each constellation sym-
bol with the corresponding centroid. For a finite channel
memory K, knowing {a,_}, we compute {Z,,_} and use
these centroids to approximate a,, as

D

K
DD AL )

p=0 k=1

(even)

Ay = Ay —

The value of a,, evaluated in (16) can be used in (7) and the re-
sulting equation solved to get an approximation of x,,. Notice

that in (16) we obtained an approximation of @, as an im-
plicit function of [a,,— k., ..., a,—1] using only the estimated
centroids of the predistorted symbols and a,,. Since the cen-
troid and channel computations are off-line, hence z,, can be
obtained off-line entirely and a LUT generated. Such a LUT
maps [a,_x, - - -, an] to [T,] and has a dimension of MK+,

5. NUMERICAL RESULTS

In this section we compare the predistortion techniques de-
signed in Sections 3 and 4 against standard memory polyno-
mial predistortion [5S]. To this end we simulated the chan-
nel of Fig 1 and Table 1 details the simulation parameters.
The Saleh model is a memoryless non-linearity with AM/AM

Table 1. Simulation parameters

Parameter Value
HPA model Saleh Model [1]
TX/RX filters | Square Root Raised Cosine, roll-off=0.25
Modulation 32APSK
Coding LDPC 3/4
AM/PM characteristics: A(r) = %275, ®(r) = ﬁ”Z

with parameters [a; = 1, as = 0.25, 51 = 0.26, 52 = 0 25]
The predistortion technique based on real-time roots compu-
tation (refer to Section 3) has been implemented assuming
the channel model in (4), with a memory depth K = 1 and
polynomial degree D + 1 = 5. For the same channel charac-
teristics, we also implemented the reduced complexity predis-
tortion method described in Section 4 generating a LUT with
ME+L = 322 entries addressed with (K + 1) log, (M) = 10
bits. In either case the channel estimation is based on 15000
training symbols and the linear LS minimization [13]. For
the matter of comparison, we devised a memory polynomial
predistorter as in [5]. This memory polynomial predistorter
function has a memory depth of K = 1, polynomial degree
of D + 1 = 5 and is estimated using the indirect learning
method [14] with 15000 training symbols.

As metric for HPA power efﬁciency we use the OBO (Out
Back Off) as OBO = 101log PS";‘JT where P,,; and P3AT are

out

the output and saturated powers ‘of the HPA, respectively. The
OBO defines the working point of the HPA and controls the
level of non-linear effects as well as the overall signal power
level. Non linear interferences are stronger close to the sat-
uration region (OBO~ 0 dB) while they tend to disappear
moving to the linear region (OBO— co). However, the over-
all signal power decreases when OBO increases, resulting in
a degradation of the effective SNR for a fixed level of noise
power at the receiver.

Performance can be evaluated in absence of noise by
means of the Normalized Mean Square Error (NMSE) de-
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fined as E[|r, — a,|?/|rn|?]. Fig 2 shows how the NMSE

—e—NO DPD
—a&— RB-LUT-DPD

RB-DPD
—e— MP-DPD

NMSE[dB]

4
OBO [dB]

Fig. 2. NMSE vs OBO (Noiseless)

varies with respect to the OBO. We can notice a dramatic
reduction in the interference level (here measured as NMSE)
for the new techniques (legends RB-DPD and RB-LUT-DPD
for techniques described in Section 3 and 4, respectively)
compared to the standard memory polynomial predistortion
(MP-DPD). Moreover, the performance loss between the
real time roots computation (RB-DPD) and its complexity
reduced version (RB-LUT-DPD) is almost negligible. The
slight increase in NMSE for the predistortion techniques at
high OBO can be attributed to the channel mismatch.

Having demonstrated a significant NMSE gain in the non-
linear region for the noiseless case, we evaluate the BER trend

(see Fig 3) with the amplifier operating very close to satura-
tion (OBO = 1 dB). Fig. 3 provides a measure of the F's/Ny

—e—NO DPD
—e—MP-DPD
RB-DPD
—a— RB-LUT-DPD
10_6 L L L L L L
12 13 14 15 16 17 18
E/N,

Fig. 3. BER performance of predistortion techniques for
OBO=1dB

gain of the new method over the standard memory polyno-
mial technique and the negligible loss in performance due to
approximations is also illustrated. In order to investigate BER
behavior with respect to the OBO, we set a fixed noise level
at the receiver of N, = 15dB + EgSAT) where ES(SAT) is
the average signal energy received when the amplifier is in

saturation (OBO = 0 dB).

—=—NO DPD
—e—MP-DPD
oL RB-DPD
—a— RB-LUT-DPD

i i i i
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:
15 2
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Fig. 4. Impact of OBO on BER of different predistortion tech-
niques

Fig. 4 illustrates the variations in BER due to OBO. Close
to the saturation region, the BER is influenced by the strong
non-linear interferences, while moving toward the linear re-
gion of the amplifier, the BER rises again due to the reduction
in the received SNR. For the chosen settings, it can be seen
that the devised techniques provide a range of OBO in which
the BER is negligible. This is due to the enhanced mitigation
offered by the proposed techniques that allow for the optimal
performance of LDPC. On the other hand, for the MP-DPD,
an increase in E's/Np is needed to obtain improved BER.

6. CONCLUSION AND FUTURE WORK

A novel transmitter based technique for the mitigation of
the impairments generated by a non-linear channel was de-
signed. Exploiting the transmission of finite constellation
symbols, this method provided significant gain over the most
commonly applied predistortion techniques. A reduced com-
plexity implementation yielding a LUT was also provided.
Such a LUT based technique is a promising candidate for
incorporation in next generation terrestrial as well as satellite
systems towards improving power and spectral efficiencies.
Future research will target the complexity reduction of the
LUT as well as the possible extension to the multicarrier
scenario.
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