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ABSTRACT

We consider the filtering problem in linear state space mod-
els with heavy tailed process and measurement noise. Our
work is based on Student’s t distribution, for which we give
a number of useful results. The derived filtering algorithm is
a generalization of the ubiquitous Kalman filter, and reduces
to it as special case. Both Kalman filter and the new algo-
rithm are compared on a challenging tracking example where
a maneuvering target is observed in clutter.

Index Terms— Student’s t distribution, Kalman filter, ro-
bustness, outliers

1. INTRODUCTION

The aim of this document is to derive a filter for linear state
space models that is robust towards outliers in both process
and measurement noise, simple to implement, and applicable
to high dimensional problems. Therefore, we investigate Stu-
dent’s t distribution [1], which is particularly suited to model
the phenomena and noise behavior we want a filter to cope
with, for instance: measurement outliers from unreliable sen-
sors, target maneuvers in tracking applications, or errors that
occur when working with linearized nonlinear systems.

Filtering in linear state space models is a mature field with
the Kalman filter [2,3] in its center for several decades. Apart
from being the optimal Bayesian filter for linear Gaussian
systems, the Kalman filter is the best (in terms of the mean
squared estimation error) linear unbiased estimator [2] for ar-
bitrary noise. Consequently, any achievable performance gain
must come from a nonlinear filter. Our starting point is, as
can be for the Kalman filter, the evolution of random vectors
throughout time. The particular choice of the t distribution in
conjunction with minor approximate adjustments results in a
nonlinear filter which, as it turns out, reduces to the Kalman
filter for one choice of parameters, in the same way as the t
distribution converges to the Gaussian for infinite degrees of
freedom. Moreover, the filter is easy to implement and com-
pares to the Kalman filter in terms of computational demand.

This work has been supported by the MC Impulse (Monte Carlo based
Innovative Management and Processing for an Unrivaled Leap in Sensor Ex-
ploitation) project, a European Commission FP7 Marie Curie Initial Training
Network.

Earlier efforts to derive filters based on the t distribution
were made in [4, 5] but did not receive much attention in the
signal processing community. Our approach differs consider-
ably from [4,5] in that we include careful approximation steps
to overcome the shortcomings of the t distribution. Several
recent publications address the filtering problem with heavy
tailed measurement noise only. Whereas [6] and [7] sug-
gest the use of variational approximations, an optimization
approach using `1 regularization is sketched in [8]. Common
to [6–8] is the assumption of well behaved process noise. This
is easily violated in realistic scenarios, e.g. tracking of ma-
neuvering targets, and leaves the methods of [6–8] debatable
for many applications.

We think that a filter that allows for heavy tailed distri-
butions for noises and states is of substantial practical value.
One promising application is approximate nonlinear filtering,
where conventional algorithms (EKF and related [2, 9, 10],
UKF [11]) involve strong simplifications of the underlying
model while keeping the assumption that the state is Gaussian
throughout time. Consequences include diverging estimates.
The more flexible particle filters [12,13] are usually not appli-
cable in high dimensions. The here suggested filter addresses
heavy tailed distributions in a natural manner, while keeping
the computational cost low.

The outline of the paper is as follows. Sec. 2 introduces
Student’s t distribution and a number of useful results, based
upon which a filtering algorithm is developed in Sec. 3. A
simulation study in Sec. 4 is used to show the potential of the
derived filter. Concluding remarks are given in Sec. 5.

2. STUDENT’S T DISTRIBUTION

Let y ∈ Rd be a zero-mean random vector with Gaus-
sian [14] distribution N (0,Σ) and covariance Σ. Let w > 0,
w ∈ R have a Gamma distribution Gam(ν2 ,

ν
2 ), in shape/rate

parametrization [15]. Then

x = µ+ w−
1
2 y (1)

admits the multivariate t distribution [1] St(µ,Σ, ν) with
mean vector µ, scale matrix Σ, and degrees of freedom (dof)
parameter ν. Using ∆2 = (x − µ)TΣ−1(x − µ) and the
Gamma function [16], its probability density function (pdf)
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can be written as

p(x) =
Γ(ν+2

2 )

Γ(ν2 )

1

(νπ)d/2
1√

det(Σ)

(
1 +

∆2

ν

)− ν+2
2

. (2)

For the remainder of this paper, we abbreviate the above pdf
by St(x;µ,Σ, ν).

The t distribution reduces to the Gaussian as ν tends to
infinity, thus includes it as a special case. A number of conve-
nient properties are shared by both and can be easily derived.
As for the pdf of affine mappings of t variables [1] we have
that z = Ax+ b, with appropriate A and b, admits

p(z) = St(z;Aµ+ b, AΣAT , ν). (3)

The dof parameter remains unaltered. Turning to random vec-
tors x1 ∈ Rd1 and x2 ∈ Rd2 that are jointly t distributed with

p(x1, x2) = St(

[
x1
x2

]
;

[
µ1

µ2

]
,

[
Σ11 Σ12

ΣT12 Σ22

]
, ν), (4)

the marginal pdf of x1 can be computed by applying a linear
transformation with A =

[
I 0

]
to (4):

p(x1) = St(x1;µ1,Σ11, ν). (5)

From (4) and (5), and considerably more effort, follows the
conditional pdf

p(x1|x2) = St(x1;µ1|2,Σ1|2, ν1|2), (6a)

with the parameters

ν1|2 = ν + d2, (6b)

µ1|2 = µ1 + Σ12Σ−122 (x2 − µ2), (6c)

Σ1|2 =
ν + ∆2

2

ν + d2
(Σ11 − Σ12Σ−122 ΣT12) (6d)

and ∆2
2 = (x2 − µ2)TΣ−122 (x2 − µ2). The above expression

(6a) is again a t pdf. This result is in accordance with liter-
ature: [17] gives the expression without further details, [15]
lists the results and asks for a derivation in the exercises. The
monograph [1] misleadingly states that x1 given x2 is in gen-
eral not t distributed. In order to clarify this statement, deriva-
tions of all given results are provided in a companion docu-
ment [18] to this paper. It can be seen that the conditional
mean (6c) corresponds to the Gaussian conditional mean [14].
The matrix parameter (6d) is a scaled version of the condi-
tional covariance in the Gaussian case, which is recovered as
ν tends to infinity. In contrast to the Gaussian, Σ1|2 depends
on x2. Also, the dof parameter in (6b) increases.

The covariance of a t random variable [1] is ν
ν−2Σ for

ν > 2. Furthermore, the moments of the t distribution are
very much influenced by the tail behavior. Therefore, a t pdf
with ν = 3 appears more peaked around the mean than a
Gaussian with identical covariance. Turning to independence

and uncorrelatedness, we investigate (4) with Σ12 = 0. Using
the covariance result we know that x1 and x2 are uncorrelated.
A closer look at p(x1, x2), however, reveals that the joint pdf
does not factor. Hence, uncorrelated random variables that are
jointly t distributed are in general not independent, in contrast
to the Gaussian case. Quadratic forms xTΣ−1x/d follow an
F-distribution [15] if p(x) = St(x; 0,Σ, ν), a fact which can
be used to define probability regions and gates in target track-
ing (similar to the use of the chi-squared distribution in the
Gaussian case).

3. STUDENT’S T FILTER

In this section, we derive a filter that is fully based on the t dis-
tribution, i.e. both measurement and process noise distribu-
tion have heavy tails. The filtering pdf p(xk|y1:k) is a t den-
sity at each time k. First, we present an exact solution un-
der somewhat restrictive modeling assumptions. In a second
stage, the algorithm is adjusted to cope with more general
scenarios. We consider linear state space systems with state
difference and measurement equation given by

xk+1 = Fkxk + vk, (7a)
yk = Hkxk + ek. (7b)

Here, xk ∈ Rdx is the state at time k, yk ∈ Rdy the measure-
ment, vk and ek process and measurement noise of appropri-
ate dimension, respectively. The system matrices Fk and Hk

are known, and the initial state x0 and noises are marginally t
distributed. Fk and Hk might be obtained by linearization of
a nonlinear state space model, which discloses how the algo-
rithm can be applied to nonlinear problems.

3.1. Exact filter

Time update: Assume that the noise is such that for each k we
have the following joint density:

p(xk, vk|y1:k) = St(

[
xk
vk

]
;

[
x̂k|k

0

]
,

[
Pk|k 0

0 Qk

]
, ηk). (8)

Here, the state xk and vk are uncorrelated, in general not inde-
pendent, which is in accordance with the assumptions that are
used to derive the Kalman filter [3] from a least-squares per-
spective. The parameters of the predictive pdf p(xk+1|y1:k)
can be computed by a linear transformation and subsequent
marginalization:

x̂k+1|k = Fkx̂k|k, (9a)

Pk+1|k = Qk + FkPk|kF
T
k . (9b)

The dof parameter is ηk retained, and we obviously recover
the Kalman filter time update.
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Measurement update: Assume that the predicted state and
the measurement noise have the joint pdf

p(xk, ek|y1:k−1)

= St(

[
xk
ek

]
;

[
x̂k|k−1

0

]
,

[
Pk|k−1 0

0 Rk

]
, ηk−1). (10)

A linear transformation then gives the joint density of state
and measurement

p(xk, yk|y1:k−1) = (11)

St(

[
xk
yk

]
;

[
x̂k|k−1

Hkx̂k|k−1

]
,

[
Pk|k−1 Pk|k−1H

T
k

HkPk|k−1 Sk

]
, ηk−1)

with Sk = HkPk|k−1H
T
k + Rk. The conditional pdf of state

given measurements p(xk|y1:k) = St(xk; x̂k|k, Pk|k, ηk) can
be obtained using (6a). The updated parameters are

ηk = ηk−1 + dy, (12a)

x̂k|k = x̂k|k−1 + Pk|k−1H
T
k S
−1
k (yk −Hkx̂k|k−1), (12b)

Pk|k =
ηk−1 + ∆2

y,k

ηk−1 + dy
(Pk|k−1 − Pk|k−1HT

k S
−1
k HkPk|k−1)

(12c)

where ∆2
y,k = (yk −Hkx̂k|k−1)TS−1k (yk −Hkx̂k|k−1). The

matrix parameter Pk|k is a scaled version of the covariance in
the Kalman filter, and depends nonlinearly on the observation.
The actual filter consists of iterating through equations (9) and
(12), initialized with appropriate x̂0, P0, and η0.

Because of the assumed noise properties in (8) and (10)
we were able to apply the results of Sec. 2 to obtain an ex-
act filter. The resulting estimate (12b) is optimal in several
ways [2], being the mean, the mode, and a median of the
conditional distribution. However, the parameter ηk increases
in each filter iteration and both state and noise distributions
converge to Gaussians. That is, after few steps we obtain a
Kalman filter and lose the heavy tailed properties we initially
wanted to retain.

3.2. Suggested heavy tailed filter

The requested noise conditions of the previous section, equa-
tions (8) and (10), are hardly ever met in filtering problems.
Instead, the state and noises in (7) do not share common dof
parameters, i.e.

p(x0) = St(x0; 0, P0, η0), (13a)
p(vk) = St(vk; 0, Qk, γk), (13b)
p(ek) = St(ek; 0, Rk, δk) (13c)

with η0 6= γk 6= δk in general. The resulting conflict is here
illustrated for a time update. Suppose at time k, we have

p(xk|y1:k) = St(xk; x̂k|k, Pk|k, ηk), (14)

and p(vk) given by (13b). Assuming independence of xk and
vk yields a product for the joint pdf p(xk, vk|y1:k), which is
in general not t (not even elliptically contoured), and thus puts
an early end to our filtering efforts. If p(vk) and p(xk|y1:k),
however, shared a common dof parameter, say η̃k, we could
get back to (8) by assuming that vk and xk are not correlated.
We therefore suggest the approximation

p(xk, vk|y1:k) ≈ St(

[
xk
vk

]
;

[
x̂k|k

0

]
,

[
P̃k|k 0

0 Q̃k

]
, η̃k) (15)

which requires choosing P̃k|k, Q̃k, and η̃k. The merits of the
approximation are substantial in that we can now apply the
time update (9) of the exact filter. In a similar fashion, we
approximate

p(xk, ek|y1:k−1)

≈ St(

[
xk
ek

]
;

[
x̂k|k−1

0

]
,

[
P̃k|k−1 0

0 R̃k

]
, ηk−1) (16)

in the measurement update, which takes us back to (10).
Hence, we can apply the measurement update (12) of the
exact filter.

In summary, the two approximation steps (15) and (16)
extend the exact filter of Sec. 3.1, and provide convenient
closed form solutions for time and measurement update.
While the actual approximations remain to be specified at
this stage, we can already state that the filter deviates from an
exact Bayesian solution. Nevertheless, such approximation
efforts are common practice in many filters. Examples in-
clude the reduction of mixture components in Gaussian mix-
ture filters [2] as well as the inherent Gaussian assumption
in many nonlinear filters [9–11]. In our case, the approxi-
mations are mild in the sense that the approximated marginal
densities remain t pdfs, yet with possibly altered dof.

We can adjust the filter such that at each time k the filter-
ing pdf p(xk|y1:k) is heavy tailed, instead of converging to a
Gaussian. This fact, as discussed in Sec. 1, makes the filter
particularly suited for many applications.

The approximation steps (15) and (16) can be cast into
the following generic problem: Given that z1 and z2 are
uncorrelated with p(z1) = St(z1;µ1,Σ1, ν1) and p(z2) =
St(z2;µ2,Σ2, ν2), approximate the joint density p(z1, z2) as
t pdf by choosing common dof ν̃ and the matrix parameter as
blkdiag(Σ̃1, Σ̃2). One approach is to first select ν̃. Among
more systematic choices, an ad-hoc solution that preserves
the heaviest tails among p(z1) and p(z2) is ν̃ = min(ν1, ν2).
Each marginal pdf is then considered in a second stage, i.e.
p(z1) is approximated by q(z1) = St(z1;µ1, Σ̃1, ν̃). Rea-
soning that qualitative relations between p(z1) and q(z1)

should be preserved, it suffices to assume that Σ̃1 = c1Σ1

with a scalar factor c1. Again, numerous alternatives are con-
ceivable, e.g. moment matching, fitting probability regions,
fitting p(z1) to q(z1) on an ellipsoid. It should be noted that
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certain concepts, e.g. minimization of the Kullback-Leibler
divergence [14], are difficult to apply in the approximation
step. This is due to the complicated form that the expressions
take for t pdfs. An extensive discussion of options is beyond
the scope of this paper.

4. SIMULATION STUDY

We consider the problem of tracking a maneuvering target
that is observed in clutter. The target moves according to a
constant velocity model [19] and its position is measured. The
state space matrices and nominal parameters are given by

F =

[
I2 TI2
0 I2

]
, H =

[
I2 0

]
, Q =

[
T 3

3 I2
T 2

2 I2
T 2

2 I2 TI2

]
q,

R = rI2, q = 1, r = 100, and T = 0.5. We consider 500
time steps for each filtering experiment. Outlier corrupted
process and measurement noise are generated according to

vk ∼

{
N (0, Q), w.p. 0.95

N (0, 1000Q), w.p. 0.05
(17a)

ek ∼

{
N (0, R), w.p. 0.9

N (0, 100R), w.p. 0.1
(17b)

i.e. vk and ek are most of the times generated from a Gaus-
sian with nominal covariance Q or R. About five percent of
the process and ten percent of the measurement noise values
are drawn from Gaussians with severely increased covariance.
Obviously, there is a mismatch between this example and the
assumed distributions in Sec. 3.2. We specifically choose this
configuration to show how the filter performs under modeling
uncertainty, with merely the nominal Q and R at hand. Sim-
ulated position trajectories exhibit abrupt turns and the target
speeds contain large steps.

It should be noted that the above tracking problem is not
trivially solved by tuning of noise parameters in a Kalman
filter because both noise sources contain outliers. Also, the
solutions given in [6–8] do not account for such conditions
and may perform worse than a reasonably tuned Kalman filter.

We here compare three filters that are utilized to recover
target velocity and position: KF – a Kalman filter with the
nominal noise parameters Q and R. KF2 – a Kalman fil-
ter that is aware of the true covariances of the mixture dis-
tributions in (17), and hence the best linear filter [2] in the
mean squared error sense. TF – the filter of Sec. 3.2, which is
merely aware of the nominal noise covariances but assumes
that state and both noises admit t pdfs with dof parameter
3. The necessary approximation steps are carried out by tak-
ing the minimum among two dof parameters and adjusting
the matrix parameters such that the 80 percent probability re-
gions are preserved. The noises are adjusted accordingly, e.g.
N (0, Q) is replaced by St(0, Q̃, 3) with the same 80 percent
probability region.
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KF,   avg. 25.41m
KF2, avg. 21.46m
TF,   avg. 14.58m

Fig. 1. Position error over time steps. Excerpt of one realiza-
tion. All filters are subject to spikes in the position error. TF
is the fastest to decrease the error again. Also shown is the
average position error of the entire realization.

A typical realization is presented in Figure 1 where we
show position errors [m] over time. All filters are subject
to inevitable spikes in the position error, which either stem
from a measurement outlier or a target maneuver. KF requires
longer than its competitors to decrease the error. The opti-
mal linear KF2 provides improved position estimates but is
aware of the true noise statistics. TF merely knows the nom-
inal Q and R, but still yields an improvement over KF2. It
adjusts quickly after a peak in the position error, which can
be explained by the observation dependent update of Pk|k
in (12). TF appears especially beneficial for severely maneu-
vering targets. Also, an averaged position error [m] of that
particular run is displayed in Figure 1. The errors in estimated
target speed are comparable for all filters, yet KF2 outper-
forms KF and TF. The above behavior is confirmed in 1000
Monte Carlo runs. The averaged errors (over time steps and
MC runs) are: KF 23.8, KF2 20.0, TF 14.5, for position [m],
and KF 11.5, KF2 10.8, TF 11.5 for speed [ m

sec ]. The quali-
tative relations are also preserved in 1000 MC runs with ran-
domized Q and R, i.e. q = 10s with uniform s ∼ U(−2, 3),
and r = 10t with t ∼ U(−1, 2). Here, TF outperforms KF
and KF2 in position and velocity error: KF 7.5, KF2 6.3, TF
5.0, for position [m], and KF 13.5, KF2 13.6, TF 12.9, for
speed [ m

sec ].

5. CONCLUSION

Based on the t distribution, we derived a filter that is a non-
linear generalization of the Kalman filter, yet as simple to im-
plement. Its potential application lies in problems with heavy
tailed process and measurement noise, e.g. filtering using lin-
earized nonlinear state space models or maneuvering target
tracking in clutter. We showed that the new filter outperforms
the best linear estimator in a challenging tracking scenario,
even though it does not know the underlying noise statistics.
It performs particularly well for severely maneuvering targets.
We have thereby shown that the new filter provides robustness
towards outliers in process and measurement noise, and per-
forms well under model mismatch.
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