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ABSTRACT

This paper presents power allocation in nonlinear sensor
networks for Gaussian Mixture (GM) information source.
The observations of sensors are transmitted through indepen-
dent Rayleigh flat fading channels to a fusion centre (FC).
Transmit Power is optimally allocated to sensor nodes so
as to minimize the mean square error (MSE) of estimate at
FC. Bayesian linear and optimal nonlinear estimators are
deployed at FC to compare the proposed optimal and uni-
form power allocation among sensors. Extensive simulations
validate that the proposed Bayesian linear estimator with
optimized power gains effectively works for GM prior distri-
bution.

Index Terms— Wireless Sensor Networks, Gaussian
Mixture Models, Unscented Transformations

1. INTRODUCTION

Target localization in Wireless Sensor Networks (WSNs) has
been an active research area due to its immense industrial
importance and wide range of applications [1], [2]. Target
localization with the aid of fusing data from a set of sen-
sors presents many design challenges due to limited energy
resources inherent to WSN. The goal is to produce an esti-
mator that has minimum mean square error (MMSE) under
constraints on transmission power at the sensors.

Recently [3] considered power allocation in sensor net-
work assuming that information source follows Gaussian
distribution. However, Gaussian Mixture distribution is a
more judicious choice for prior knowledge because any non-
Gaussian distribution can be represented by sum of Gaussian
distributions [4]. It can also be verified that posterior distri-
bution for Gaussian Mixture prior knowledge and Gaussian
noise is also a Gaussian Mixture. Motivated by these facts
and the MSE optimality of the MMSE estimator for GM
distribution, we have adopted this model in our paper.

In [5], the source localization problem has been addressed
for Gaussian Mixture Model as prior distribution which is a
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more judicious choice. [6] shows derivation for closed form
expressions for GM prior knowledge with only Bayesian lin-
ear model. Moreover, no analytical expression for MSE has
been derived in [6]. In this paper, we consider Gaussian Mix-
ture prior distribution in both linear and nonlinear sensor net-
works. An SDP based convex optimization problem has been
solved for Gaussian Mixture Model prior knowledge to allo-
cate power to a group of sensors so as to minimize the MSE
subject to a total transmit power. Unlike [5], which only con-
siders Bayesian linear models, we consider nonlinear sensor
network in our formulation. Moreover, unlike all previous
works [7] consisting mainly of linear sensor networks (LSNs)
for locating a static target, the gaussian mixture based opti-
mal power Wiener filters and MMSE estimators are shown
computationally tractable in our work.

To the best of our knowledge,we have offered the power
allocation for MMSE estimator for nonlinear senor network
(NSN) with GM prior knowledge for the first time. The major
contribution of this paper is that a suboptimal power alloca-
tion for Bayesian MMSE estimator has been proposed for first
time using the bounds suggested in [6]. Since Gaussian Mix-
ture is a very generic information source, the proposed esti-
mator can be used to evaluate the MSE performance of differ-
ent systems under various operating conditions when power
allocation for sensor nodes is of interest.

The rest of paper is structured as follows. Section II de-
scribes the system model and formulation of the problem.
Section III illustrates the derivation of Wiener filtering for
Gaussian Mixture prior knowledge. Section V provides the
simulation results which is followed by concluding remarks
in Section VI.

Most of the notations used in the paper are described
here. Bold lower-case and upper-case symbols are used to
represent vectors and matrices respectively. By A � 0 it
means A is a positive definite matrix. diag[ai]i=1,2,...N or
diag[a1, a2, ..., aN ] is a diagonal matrix.

√
q for a vector q

with nonnegative components is component-wise understood.
E[.] is the expectation operator. For a random variable (RV)
x, the notation x ∼ N (x;mx,Rx) means x is Gaussian RV
with the moments mx and Cx.
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2. PROBLEM FORMULATION

Consider a target x ∼ ∑L

i=1 λiN (x;m
(i)
x ,C

(i)
x ) in N -

dimensional space (i.e. rough initial information of x ex-

pressed by
{

λi,m
(i)
x ,C

(i)
x

}L

i=1
is given), which is observed

by M spatially distributed sensors. A simple uncoded ana-
log amplify and forward scheme is employed to send the
measurements of sensors y to the fusion center (FC). The
channels between sensors and FC are assumed to be inde-
pendent Rayleigh flat fading orthogonal channels which can
be justified by adopting a multiple access technique such as
TDMA/FDMA at transmitters of sensors [8]. Thus, all these
interactions can be compactly modeled by the following be-
havioral equations

y = g(x) + n, (1)

z(α) = H(α)y +w, (2)

where g(x) = (g1(x), g2(x), ...., gM (x))T with each com-
ponent gi(x) a (linear or nonlinear) deterministic function
for expression of i-sensor measuring quantity such as range
and/or bearing. Accordingly, y = (y1, y2, ..., yM )T are the
sensors’ measurements and n ∼ N (0,Cn) with diagonal Cn

is AWGN corrupting noise, which is uncorrelated with the
source x. These measurements are relayed to the fusion cen-
ter (FC) and so H(α) ∈ R

M×M is called the relay matrix
defined by

H(α) = diag[
√
αi

√

hi]i=1,2...,M (3)

which includes the channel gains
√
hi between i-th sensor

node and FC and amplifier coefficients
√
αi to control the

transmit power of i-th sensor node. w ∼ N (0,Cw) with
diagonal Cw is the FC measurement noise.It follows that the
power consumed by i-th sensor node is

Pi = αiRy(i, i).

Hence, for Dα := diag[αi]i=1,2...,M , the sum power con-

sumed by the entire SN is
M
∑

i=1

Pi = Trace(DαRy) which is

normally constrained by a fixed power budget PT > 0

Trace(DαRy) ≤ PT . (4)

The Bayesian optimal MMSE estimate based on FC out-
put z is [9],

x̂mmse , E[x|z]

=

L
∑

i=1

λi(z)
[

m
(i)
x

+ (C(i)
zx)

T (C(i)
z )−1(z− z̄(i))

]

=

L
∑

i=1

λi(z)(m
(i)
x

+ (C(i)
yx)

THT (α)(H(α)C(i)
y HT (α)

+ Cw)
−1
(

z−H(α)ȳ(i)
)

). (5)

where

λi(z) =
λi

1√
det(2πC

(i)
z

)
exp

(

− 1
2‖z− z̄(i)‖2

(C
(i)
z )−1

)

∑L

i=1 λi
1√

det(2πC
(i)
z

)
exp

(

− 1
2‖z− z̄(i)‖2

(C
(i)
z )−1

)

C(i)
y = E[(y − ȳ(i))(y − ȳ(i))T ] (6)

C(i)
yx = E[(y − ȳ(i))(x−m

(i)
x
)T ] (7)

ȳ(i) = g(m(i)
x
) (8)

The power optimization problem for MMSE estimate in con-
sidered scenario can be put as

min
αi≥0, i=1,2,...,M

Trace(Ce,mmse) subject to (4), (9)

In (9), the Ce,mmse has no closed form expression [6].
Consequently, tractable optimization for MMSE estimate of
Gaussian Mixture information source cannot be formulated in
αi. Therefore, we move on to linear minimum mean square
(LMMSE) estimate for which error covariance matrix exists
in closed form and then establish its relation with the upper
bound of MMSE estimator. By [10, Theorem 12.1] , the
LMMSE estimate for x based on FC output z is

x̂ , x̄+CT
zxC

−1
z (z− z̄)

= x̄+CT
yxH

T (α)(H(α)CyH
T (α) +Cw)

−1

× (z−H(α)ȳ). (10)

The covariance matrix of the estimator error

e := x− x̂,

is as follows

Ce = Cx −CT
zx(H(α)CyH

T (α) +Cw)
−1Czx

= Cx −CT
yxH

T (α)(H(α)CyH
T (α) +Cw)

−1

× H(α)Cyx.

We are now in a position to formulate the problem of mini-
mization of MSE, subject to the power budget constraint (4)
as

min
αi≥0, i=1,2,...,M

Trace(Ce) subject to (4), (11)

Using [3], from (11) the power optimization problem for
Gaussian Mixture prior knowledge can be formulated as
follows:

min
t,z,αi≥0, i=1,2,..,M

t subject to(4), (12)

Trace(z) ≤ t,

(

z CT
yx

Cyx Cy +CyDαC
−1
w DhCy

)

� 0.

where Dh = diag[hi]i=1,2...,M .The above SDP is com-
putationally tractable and can be realized if the sensor output
covariance matrix Cy and its cross-covariance matrix Cxy
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with source x can be computed. The MMSE for Bayesian
optimal estimator ǫ2 is bounded as follows [6] :

ǫ2 ≤ Trace(Cx −CT
yxH

T (α)(H(α)CyH
T (α) +Cw)

−1

H(α)Cyx)

Since the MMSE ǫ2 is upper bounded by the MSE of LMMSE
estimator, therefore we use this upper bound to perform the
power optimization for MMSE estimator. This owes to upper
bound optimization which is sub-optimal solution for opti-
mization of an objective function in absence of its analytic
form [11].

3. WIENER FILTERING FOR GAUSSIAN MIXTURE
PRIOR KNOWLEDGE

This section illustrates the estimation of a static target char-
acterized by Gaussian Mixture prior knowledge. The local-
ization of such a target is achieved by executing the SDP de-
veloped in previous section and for this purpose, the moment
approximations are required.In LSNs, model (1)-(2) is com-
pletely linear, i.e. the input-output system (1) of the sensor
measurements is represented by

y = Gx+ n, (13)

whereG ∈ R
M×N is a matrix representing the different sens-

ing conditions of sensors, which is known to the FC. There-
fore the analytical forms of statistical moments are available

Cxy = E[(x− x̄)(y − ȳ)T ] = CxG
T

Cy = E[(y − ȳ)(y − ȳ)T ] = GCxG
T +Cn

(14)

where

Cx =

L
∑

i=1

λi

(

C
(i)
x

+ (m(i)
x
)(m(i)

x
)T
)

−
L
∑

i=1

L
∑

j=1

λiλj(m
(i)
x
)(m(j)

x
)T

ȳ = Gx̄, x̄ =

L
∑

i=1

λim
(i)
x

Similarly, for Bayesian estimator, the sensors’ output mo-
ments can be expressed as follows :

C
(i)
xy = E[(x−m

(i)
x )(y − ȳ(i))T ] = C

(i)
x GT

C
(i)
y = E[(y − ȳ(i))(y − ȳ(i))T ] = GC

(i)
x GT +Cn

(15)
where

ȳ(i) = Gm
(i)
x

(16)

It is tedious task to find the output moments of a general
nonlinear map g(x) which are required for implementation of

(12). We approximate Cxy and Cy by using unscented trans-
formation (UT) and linear fractional transform (LFT). The
UT is used for moderately nonlinear maps and LFT is used for
higher order or fractional nonlinear maps. Unlike linearizing
the deterministic map y as done in the conventional Extended
Kalman Filter (EKF), the unscented transformation [12] ap-
proximates the output moments of a nonlinear transformation
by finding a set of regression points of input random variable
whose sample pdf approximates the true pdf. These sigma
or regression points are transformed through exact nonlinear
transformation and the sampled pdf of the outcomes are used
to approximate the output moments with reasonable accuracy
. In case of Bayesian estimator, the moment approximations

are performed for L sets
{

λi,m
(i)
x ,C

(i)
x

}L

i=1
independently

to evaluate
{

C
(i)
yx,C

(i)
y , ȳ(i)

}L

i=1
. Due to limited space, we

are unable to provide the mathematical details of moment
approximation through UKF-LFT. For detailed mathematical
description, see [3].
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Fig. 1. MSE Performance of LSN for Gaussian Mixture Vec-
tor Prior Knowledge

4. SIMULATION RESULTS

The accuracy of the proposed estimation schemes is exhaus-
tively validated via simulative results generated by 10, 000
Monte Carlo source and channel realizations for localization
of static target. The number of sensors taking measurements
in equal power and optimal power schemes is ten (M = 10).
The channels between these sensors and FC are considered to
be independent identically distributed (i.i.d.) Rayleigh fading
channels with unit power. The noise at FC is assumed to have
variance of

√
0.5. We consider a vector valued target whose
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Fig. 2. MSE Performance of NSN for Gaussian Mixture
Scalar Prior Knowledge

position is characterized by following probability distribution

x ∼ 1

3
N (x;02×1, I2) +

1

3
N (x; 5× 12×1, I2)

+
1

3
N (x;−5× 12×1, I2) (17)

In Fig. 1, the position of a target lying in x − y coordi-
nate system is observed by ten sensors. The measurements of
sensors are linear, i.e., x and y coordinates of target position
immersed in noise. The graph plots MSE of position estimate
versus total transmit power. The total transmit power is varied
from 0.1 to 1 watts. It is obvious from the Fig. 1 that optimal
power MMSE based estimator clearly outperforms the equal
power based MMSE estimator and optimal power LMMSE
based estimator in terms of MSE. Our solution offers atleast
6 dB performance improvement over the equal power MMSE
based estimator. This performance improvement comes from
the optimal allocation of power among sensors in comparison
to uniform distribution of power among sensor nodes.

Fig. 2 delineates the case of a scalar target characterized
by x ∼ 1

2N (x; 1, 1) + 1
2N (x; 3, 1) lying on x-axis. The plot

shows three different power allocation schemes for estimation
of this target. The range of this scalar target is measured by
ten sensors using

gn(x) =
√

(n− 1)2d2 + x2 n = 1, 2, ..., 10 (18)

The estimation performance of UKF-LFT based optimal
power MMSE estimator is comparable to UKF based optimal
power LMMSE estimator but the performance improvement
of UKF based optimal power estimator is atleast 5.5 dB bet-
ter than its equal power based counterpart. This performance
improvement certainly owes to the optimized power gains
which allocates the power in such a fashion so as to minimize
the overall distortion.
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Fig. 3. MSE Performance of NSN for Gaussian Mixture Vec-
tor Prior Knowledge

In Fig. 3, we consider the localization of a static object in
R

2 whose position is characterized by (17). A typical sensor’s
measurements consist of the following ranging and bearing

yi =

(

√

(si,x − x(1))2 + (si,y − x(2))2
si,y−x(2)
si,x−x(1)

)

+ ni (19)

The noise at FC has prior knowledge σ2
r = 0.5 and σ2

φ =
π/180.It is evident from the graph that optimal power MMSE
based estimator beats the performance of equal power MMSE
based estimator. In low power region, the distortion gap be-
tween optimal power based MMSE and LMMSE estimators is
negligible. Moreover for high power region, the performance
improvement offered by optimal power based MMSE estima-
tor over equal power based LMMSE estimator is less than 1
dB. However, optimal power based MMSE estimator offers
3 dB performance improvement over equal power MMSE es-
timator which is significant enhancement. Thus, our optimal
power MMSE estimator is better than optimal power LMMSE
estimator and equal power MMSE estimator in all the exam-
ples.

5. CONCLUSION

The problem of power allocation for localization of a static
target characterized by GM information source via linear and
nonlinear sensor networks has been dealt with in this paper.
The sensors’ observations are fused at FC and afterwards es-
timation is carried out to achieve maximum benefit from mul-
tisensor diversity. Both Bayesian optimal and suboptimal es-
timators are tested to validate the correctness of our proposed
power allocation schemes. A suboptimal power allocation
scheme has been suggested for Bayesian MMSE estimation
of GM static target.
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