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ABSTRACT

Stochastic resonance (SR) is a physical phenomenon through
which system performance is enhanced by noise. Applica-
tions of SR in signal processing are expected to realize the
detection of a weak signal buried in strong noise. Extraction
of the effect of SR requires the design of an effective nonlin-
ear system. Although a number of studies have investigated
SR, most have employed conventional nonlinear filters. The
present study proposes simple optimum nonlinear character-
istics that maximize the performance enhancement, which is
measured by the signal-to-noise ratio. The mathematical ex-
pression is simple, and the obtained performance is beyond
that of linear systems. Surprisingly, the proposed nonlinear
method can obtain the Cramér-Rao bounds and is equivalent
to the maximum likelihood estimator. In addition, such opti-
mization demonstrates systematically that the applications of
SR to signal detection is effective only in non-Gaussian noise
environments.

Index Terms— Stochastic resonance, signal detection,
nonlinearity, Cramér-Rao Bounds, maximum-likelihood es-
timation

1. INTRODUCTION

Stochastic resonance (SR) is an interesting phenomenon in
that it can enhance system performances in noisy environ-
ments. A number of studies have investigated the basic char-
acteristics of SR [1–3] and systems that exhibit SR in various
fields, such as superconducting quantum interference devices
(SQUIDs) [4, 5], sensory neurons [6, 7].

In the field of signal processing, linear filtering is a tra-
ditional approach to detecting weak signals in noisy envi-
ronments. A novel techniques with SR criterion have been
widely discussed [8–12]. Some authors stated that the appli-
cation of the SR should be effective in Non-Gaussian noise
environment [11, 12]. A number of studies have focused on
communication systems, and the potential performance im-
provements have been reported [13,14]. However, in conven-
tional SR systems, the performance enhancement is limited in
the presence of white Gaussian noise, requiring the selection
of a linear system [15].

A system exhibiting SR has three components: noise,
nonlinearity, and a desired weak signal. In a number of stud-
ies on SR, both the characteristics of noise and nonlinearity
are fixed in advance, and the effect of SR is measured using
the signal-to-noise ratio (SNR), in addition to mutual infor-
mation and in-out correlation. Of course, there are numerous
types of noise and nonlinear systems. A limited number of
such investigations cannot determine which type of nonlin-
earity is optimal for a given noise type, and vice versa.

Signal processing systems usually receive signals that
have been corrupted by noise. The characteristics of the
noise cannot be designed or adjusted, and the only option
is tuning the nonlinearity. This means that the simple op-
timum nonlinearity, which maximizes SNR for the noise,
should be explored. Fundamental nonlinear devices, such
as comparators and Schmitt triggers, have also been inves-
tigated. Although such devices are easy to implement and
evaluate, the resulting performance is poor so that linear sys-
tems should be good choice. From an information theory
viewpoint, the most reliable scheme involves the use of an
optimum detection device, such as a Bayesian detector or
a Neyman-Pearson detector. Some studies have evaluated
optimum-detector-based SR systems [10, 12, 16], which pro-
vide good performance but involve complicated schemes that
are not acceptable as simple practical devices.

The present paper describes a theoretical simple optimum
nonlinear filter for SR applications. We herein focus on white
noise and consider a simple nonlinear system, the length of
the impulse response of which is equal to zero (no memory
effect). The primary contributions are as follows:

1. Proposal of a simple optimum nonlinearity that maxi-
mizes SNR

We derive a mathematical expression of the optimum
nonlinearity in the presence of arbitrary white noise.
This simple expression yields the Cramér-Rao bounds
and has better performance than that in linear systems.

2. Clarification of the effective situation in which SR-
based signal detection is better than in linear systems

The proposed nonlinearity demonstrates that if the
noise follows a non-Gaussian distribution, there exists
an SR-based system superior to any linear one. On the
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Fig. 1. Schematic diagram of SR-based systems with white
noise.

other hand, in the presence of Gaussian noise, no SR-
based system can provide a better performance than a
linear system.

The remainder of the present paper is organized as follows.
In Section 2, we describe the system considered herein. The
proposed nonlinearity is introduced and the performance is
evaluated in Section 3. The relation to the Cramér-Rao bound
is discussed in Section 4. Section 5 concludes the present
paper.

2. SYSTEM MODEL

A schematic diagram of the SR-based system is shown in
Fig. 1. The SR system receives a desired signal ϵs(t) cor-
rupted by a white noise n(t). Since the system consists of a
simple nonlinear filter h(x), the output of which is given by

y(t) = h (ϵs(t) + n(t)) . (1)

In this system, we can choose any white noise and the nonlin-
ear function.

We consider the situation in which the signal amplitude ϵ
is assumed to be small compared to the noise at the input. In
this situation, it is difficult to extract the desired signal ϵs(t)
from the input. Owing to the SR effect in the nonlinear filter,
we can obtain the signal at the output. This effect can be mod-
eled by the SNR, which is widely used in the field of signal
detection. The SNR at the output can defined as follows:

G =
1
T

∫ T

0
⟨y(t)− h(n(t))⟩2dt

1
T

∫ T

0
{⟨y2(t)⟩ − ⟨y(t)⟩2} dt

(2)

where ⟨z⟩ =
∫
zp(n)dn. This SNR represents the desired

signal component at the output, which is divided by the noise
variance.If the SNR is larger than that at input, the system can
improve signal detection.

3. SIMPLE OPTIMUM NONLINEARITY AND AN
EXAMPLE

3.1. Theory of a simple optimum nonlinear filter for SR

The SNR of eq. (2) depends on the filter function h(x). In this
section, we determine the optimum h̃(x), which maximizes
the SNR.
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Fig. 2. Normalized SNRs for SR systems with optimal non-
linearity and a simple threshold system, in addition to a linear
system. White Cauchy noise is considered. As the increase of
γ, the power of the Cauchy noise is also increased.

For a sufficiently small input signal (ϵ ≈ 0; low SNR at
input), Taylor series of the output around ϵ is,

y(t) = h(n(t)) + ϵs(t)h′(n(t)) +O(ϵ2). (3)

Since ϵ ≈ 0, O(ϵ2) can be negligible, and then eq. (3) is
reduced to y(t) = h(n(t)) + ϵs(t)h′(n(t)). Substituting it
into eq. (2), the SNR can be expressed as:

G ≈ ϵ2Psg, g =
⟨h′(n)⟩2

⟨h2(n)⟩ − ⟨h(n)⟩2
, (4)

where Ps =
1
T

∫ T

0
s2(t)dt is the signal power. The coefficient

g can be observed that it is normalized by both time and the
signal power. In this sense, we call it as the normalized SNR,
which is key parameter in this paper.

Since the normalized SNR contains the nonlinear func-
tion, the optimal nonlinearity h̃(x) can be obtained by the
maximization. This can be done by the functional derivative
of the normalized SNR δg/δh(x) = 0 as follows [17]:

h̃(x) = a− b
∂ ln p(n)

∂n

∣∣∣∣∣
n=x

(5)

where a and b are constants.
The optimal nonlinearity h̃(x) given in eq. (5) im-

plies an important clarification of the situation in which
SR-based signal detection is better than that in a linear
system. If the noise follows a Gaussian distribution, i.e.,

p(n) = 1/
√
2πσ2 exp

{
− (n−µ)2

2σ2

}
, the optimum nonlinear-

ity can be calculated as h̃(x) = cx + d, where c and d are
constants. This optimum filter function appears to be linear,

5761



0.01 0.02 0.03 0.04 0.05 0.06

-4.0

-2.0

2.0

4.0

Time [s]

S
ig

n
a

l 
a

m
p

lit
u

d
e

 [
V

]

(a) Input signal (sinusoidal + Cauchy noise)
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(b) SR with optimal nonlinear filtering
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(c) LPF of the optimal nonlinear filtering
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(d) LPF of the input signal

-10.0 -5.0 10.0

-10.0

-5.0

10.0

Input [V]

O
u

tp
u

t 
[V

]

5.0

0.0

5.00.0

(e) Optimum nonlinearity h̃c(t) for Cauchy noise

Fig. 3. A signal example for Cauchy noise (γ = 0.10). The dotted line indicates the scaled sinusoidal signal. Although the
desired signal does not appear in the case of (d) linear filtering case (LPF), (c) LPF of the optimal nonlinear filtering provides
the signal fairly well.

which means that linear filtering is optimum for Gaussian
noise. In the case of non-Gaussian noise, since the optimum
function is nonlinear, nonlinear filtering exhibiting SR is
beneficial.

3.2. Numerical example and discussion

In order to verify the effect of the proposed nonlinear fil-
ter, we evaluate the SNR in the presence of a non-Gaussian
noise. Since the SNR depends on the normalized g, the per-
formance is evaluated by it. As an example of non-Gaussian
noise, we consider a Cauchy noise with a zero-mean p.d.f.,

p(n) =
{
πγ

[
1 + n2

γ2

]}−1

. The SNR for the optimal non-

linearity is plotted as a function of γ in Fig. 2. Here, we
consider a sinusoidal waveform as the desired weak signal,
and the two constants are set to be ãc = 0 and b̃c = 1. For
comparison, the SNRs for a linear system h(x) = x and a
simple threshold system h(x) = sgn(x − θ), which is a typ-
ical nonlinear system in SR research, are shown. The thresh-
old is set to be θ = 0.5. The increase of γ means that the
power of the Cauchy noise is also increased. Actually, the
SNR at the input side equals to the one in the case of the lin-
ear system since the SNR is defined in frequency domain and
the system cannot improve it. For reference, Fig. 3 shows

signal examples at γ = 0.10. The optimum nonlinearity is
h̃c(x) = ãc + b̃cx/(γ

2 + x2), as shown in Fig. 3(e).

The nonlinearity function for a weak signal, which is lo-
cated in the region around zero input voltage in Fig. 3(e), can
be viewed as linear function with a large slope. This means
that if the noise voltage is weak, the desired weak signal is en-
hanced significantly. In contrast, the high voltage of the noise
is reduced to zero voltage because the nonlinear filter output
for the high-voltage input is approximately zero. Fig. 3(a)
indicates that this situation often arises, and such a nonlin-
ear effect should improve the SNR, as shown in Fig. 2. The
optimum nonlinear function contains the parameter γ, which
determines the noise characteristics. The nonlinearity is opti-
mized for every γ, so that optimal nonlinearity always gives a
higher SNR than other systems.

The performance of the comparator has a peak at γ ≈
0.30. This means that the system with the comparator can
be enhanced in the certain level of the noise. However, in
the case of an optimum nonlinear filter, such peak does not
appear and the performance decreases monotonically. If the
optimum nonlinearity is fixed and the noise parameter γ is
varied, such a peak will appear.

Fig. 2 shows that even if the nonlinearity is not optimum,
the SR system is still effective in the case of non-Gaussian
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noise. A simple comparator can provide better performance
than that in the linear case. Such an improvement of the SNR
using a nonlinear system cannot be expected in the presence
of Gaussian noise, and this effect is due purely to the non-
Gaussian property of the input noise.

Although the optimum nonlinear filter is effective in non-
Gaussian noise, the SNR remains low. Fig. 3(b) shows an
example of the optimum nonlinear filter output. The signal
appears to contain the sinusoidal signal, but high-frequency
noise corrupts the signal. This means that low-pass filter-
ing (LPF) of the output is effective. The resulting signal ob-
tained after LPF is shown in Fig. 3(c). Note that we use a
transversal filter having a cut-off frequency ten times as high
as the sinusoidal signal frequency. Then, the desired sinu-
soidal signal can be obtained after LPF. The signal obtained
after only LPF is shown in Fig. 3(d). The output is so distorted
that the desired signal does not appear. This signal-based
comparison also demonstrates the advantage of the proposed
optimum nonlinear filter.

4. RELATION TO CRAMÉR-RAO BOUNDS

In this section, we demonstrate that the proposed optimum
nonlinear filter yields the Cramér-Rao bounds. The noise
p.d.f. ρ(n(t)) can be expressed in terms of the input signal
x(t): ρ(n(t)) = p(x(t) − ϵs(t)). Thus, the current problem
can be regarded as an estimation of the unknown input signal
ϵs(t) by the observed value x(t) with conditional probability
P (x|ϵs). Since x(t) and the estimated input signal ŝ(t) are
both random variables, the accuracy of the estimation can be
bounded by its variance Var(ŝ(t)). The Cramér-Rao inequal-
ity [18, 19] gives the lower bound of the variance:

Var(ŝ) ≥ F−1(ϵs),

F(ϵs) =

∫
P (x|ϵs)

[
∂ lnP (x|ϵs)

∂s

]2
dx. (6)

For a weak input ϵ → 0, the accuracy is bounded by
the Fisher information F(0). Since ∂ ln ρ(n(t))/∂n(t) =
−∂ lnP (x|ϵs)/∂s|ϵ→0, the noise intensity, which is equal to
the variance of the output for the optimal nonlinearity h̃(x),
is given by ⟨h̃2(x)⟩ − ⟨h̃(x)⟩2 = b2F(0). The scale factor
of the signal part of the output is ⟨h̃′(x)⟩ = bF(0). The
estimated input signal ŝ can be modeled as ŝ = s+ ξ, where
ξ is the estimation error, and the input signal is scaled at the
output channel by the factor ⟨h̃′(x)⟩. Then, the variance of
the estimated signal is obtained as follows:

Var(ŝ) = ⟨ξ2⟩

=
⟨h̃2(x)⟩ − ⟨h̃(x)⟩2

⟨h̃′(x)⟩2

= F−1(0). (7)

Eq. (7) indicates that the optimal nonlinearity h̃(x) yields
the Cramér-Rao lower bound of the estimation error, and the

maximum SNR can be achieved.
The simple optimum function given by eq. (5) is equiva-

lent to maximum likelihood (ML) estimation in non-Gaussian
noise. The ML estimation has been derived from a hypothe-
sis testing problem for a given a priori probability [20]. In
this sense, the nonlinear filtering is optimum for the SNR.
In general, such estimators are complicated, but the proposed
nonlinear filter given by eq. (5) can be realized in a simple
form.

5. CONCLUSION

For the application of SR in signal detection, we have pro-
posed an optimal nonlinearity in the present paper. We focus
on the white noise, and the nonlinearity is determined only by
the p.d.f. of the input noise. The theoretical analysis and the
numerical example show that the SNR performance is better
than that in linear systems.

The mathematical expression of the optimal nonlinearity
eq. (5) is so simple that the calculation and the implementa-
tion should not be difficult. In addition, this expression sys-
tematically claims that if the noise p.d.f. is Gaussian, a linear
system, rather than an SR system, should be selected. In the
non-Gaussian noise case, there exists a nonlinear system that
gives a higher SNR than that of a linear system. This will be
helpful for applying SR to signal detection, because one can
find easily what situations and/or devices are effective for the
SR application, and design a nonlinear system.

The proposed optimum nonlinearity has been discussed
from the viewpoint of information theory. The nonlinearity
is closely related to Cramér-Rao bounds and maximum like-
lihood estimation. Such conventional schemes are generally
complicated but can provide the minimum error in signal esti-
mation. As discussed in Sections 3 and 4, the proposed frame-
work has the same performance and the design task can be
simplified.

The proposed nonlinearity will be expanded to applica-
tion under colored noise. The current nonlinearity is intended
for white noise and can be obtained only from the input noise
p.d.f. Colored noise has a time-dependent characteristic (i.e.,
its auto-correlation function is not delta-shaped). The non-
linearity for colored noise can be found by considering this
characteristic. The best performance can be obtained through
simple calculation.

In practical situations, the noise p.d.f. will be dynami-
cally changed (e.g., the mean will easily fluctuate). The p.d.f.
contains all of the information about the noise, including the
mean and variance. Since the proposed nonlinearity is based
on the noise p.d.f., the changing of the p.d.f means the re-
designing of the nonlinearity. Additional research on estimat-
ing the noise p.d.f. and implementation using adaptive filter-
ing theory is necessary.
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