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ABSTRACT
In this paper, we address the problem of online state and measure-
ment noise density estimation in nonlinear dynamic state-space mod-
els. We are especially interested in making inference in the presence
of impulsive and multimodal noise. The proposed method relies on
the introduction of a flexible Bayesian nonparametric noise model
based on Dirichlet Process mixtures. A novel approach based on se-
quential Monte Carlo methods is proposed to perform the optimal
online estimation. Simulation results demonstrate the efficiency and
the robustness of this approach.

Index Terms— Bayesian nonparametric, Dirichlet Process
Mixture, particle filter, impulsive noise, α-stable process

1. INTRODUCTION

In signal processing literature, noise sources are often assumed to
be Gaussian. However, in many fields the conventional Gaussian
noise assumption is inadequate and can lead to the loss of resolution
and/or accuracy. This is particularly the case of noise that exhibits
impulsive nature. The latter is found in various areas [1–4]. In fact,
impulsive noise tends to produce large amplitude excursions from
the average value more frequently than Gaussian signals. It contains
sharp spikes or occasional bursts. As a result, its probability density
function (pdf) decays in the tails less rapidly than Gaussian pdf [5].
α-stable distribution is suitable for modeling this type of noise since
its tails are heavier than those of Gaussian distribution.

Stable distributions stem from the generalized central limit the-
orem. Thus, they can be seen as a generalization of the Gaussian
distribution. One difficulty is that they have no closed-form expres-
sions for their pdf. They can be most conveniently described by their
characteristic function [5]:

ϕ(t) =

{

exp
(

iµt− γα |t|α
[

1− iβ sgn(t) tan απ
2

])

, α 6= 1
exp

(

iµt− γ |t|α
[

1 + iβ sgn(t) 2
π
log |t|

])

, α = 1

Thus, the stable distribution is completely determined by four pa-
rameters α, β, γ and µ. To denote an α-stable distribution with
the parameters α, β, γ and µ, we will use the following notation
Sα(β, γ, µ). A more detailed description of α-stable distributions
can be found in [5, 6].

In this work, we focus on the challenging task of the online es-
timation of the state and the unknown measurement noise density
in nonlinear dynamic systems using sequential Monte Carlo (SMC)
methods. The main difficulty of the problem arises from the fact
that the estimation of the state depends on the unknown noise statis-
tics and vice versa. In addition, we consider here that the mea-
surement noise is a mixture of α-stable distributions. In such con-
text, the considered task is even more difficult due to the lack of an

analytical expression for the pdf of α-stable distributions. There-
fore, only few works consider this issue and, furthermore most of
these studies consider only unimodal noise [7, 8]. Studies on fi-
nite mixture of α-stable distributions are very limited [9–11]. These
works focus on making inference on density parameters of the α-
stable mixture without considering the state estimation. In addition,
they treat the problem by using parametric methods with a finite
number of parameters. In such models, the main difficulty is the
choice of the number of mixture components. In [9], this number
is supposed known which is generally not true in real-world appli-
cations contexts, but in [10, 11], the number of components is as-
sumed unknown a priori and is estimated using Reversible Jump
Markov Chain Monte Carlo (RJMCMC). It is theoretically desir-
able to consider models that are not limited to finite parameteri-
zations. Our method is based on a flexible Bayesian nonparamet-
ric Dirichlet Process Mixture (DPM) model which allows straight-
forward estimation of the number of components without requiring
RJMCMC-like computational approaches. Furthermore, by using
such a model, the problem of the non-existence of an analytical ex-
pression for the pdf of α-stable distributions is surmounted. How-
ever, approaches proposed in [10, 11] require the numerical evalua-
tion of the α-stable distribution at every iteration. In that case, one
should resort to computationally intensive techniques to perform the
inversion of the characteristic function of the α-stable distribution
via the fast Fourier transform (FFT). In literature, studies involving
SMC methods and nonparametric density estimation using DPMs
have been conducted [12, 13]. In [12], this issue is addressed con-
sidering a dynamic linear system. The proposed particle filter (PF)
is not able to change the mean and the covariance after they are ini-
tialized. In our formulation, we overcome this problem using an
efficient importance density which takes into account the current ob-
servation. Moreover, in both [13] and [12], the unknown noise is
assumed to be a mixture of Gaussian. In this paper, we consider a
mixture of α-stable distribution which is a more general distribution
including the Gaussian and the Cauchy ones.

This paper is organized as follows: in section 2 we briefly review
Bayesian nonparametric density estimation using DPMs. In section
3, we introduce the dynamic model as well as the measurement noise
modeling. Section 4 is devoted to the description of the proposed
particle filter (PF). Simulation results are presented in section 5 and
conclusions are drawn through section 6.

2. BAYESIAN NONPARAMETRIC DENSITY ESTIMATION
USING DPMS

Consider a set of observations {zk}
n

k=1 statistically distributed ac-
cording to an unknown pdf F such as zk ∼ F (.), k = 1, ..., n. We
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are interested in estimating the pdf F (.) based on the sequence of
observations {zk}

n

k=1. To this purpose, we consider the following
nonparametric model

F (y) =

∫

Θ

f(z|θ)dG(θ) (1)

where θ ∈ Θ is called the latent variable or cluster, f(.|θ) is the
mixed pdf and G(.) is the mixing distribution. Under a Bayesian
framework, G is assumed to be a Random Probability Measure
(RPM) distributed according to a prior distribution. In this paper,
we will select as a RPM the Dirichlet Process (DP) prior.

The DP was introduced by Ferguson [14] as a probability mea-
sure in the space of probability measures. It is characterized by two
parameters: a base distribution G0 and a concentration parameter α;
we denote it by DP (G0, α). The DP has a number of properties
which make inference based on this nonparametric prior computa-
tionally tractable. An important property is that the realizations of
a DP are discrete with probability one. Sethuraman [15] showed
that with probability one, a random draw G ∼ DP (G0, α) can be
expressed as:

G =

∞
∑

k=1

πkδθk (2)

with θk ∼ G, πk = βk

∏k−1
j=1 (1 − βj) and βk ∼ B(1, α) where

B(., .) denotes the beta distribution. Using (1), the unknown density
of interest can be rewritten as:

F (z) =
∞
∑

k=1

πkf(z|θk) (3)

The discreteness property is very attractive since it allows straight-
forward estimation of the number of components.
Another appealing feature of the DP is the so-called Polya urn rep-
resentation that results from integrating over the underlying RPM G

and provides the predictive distribution as follows [16]:

θn+1|θ1:n ∼
α

α+ n
G0 +

1

α+ n

n−1
∑

i=1

δθi (4)

This representation is very useful in practice since it allows sam-
pling observations from a DP without explicitly constructing the
RPM G ∼ DP (G0, α). In fact, conditionally on the latent vari-
able previously sampled θ1:n, a new sample is equal to an existing
one with probability proportional to the number of times this param-
eter was previously observed, or is independently sampled from G0

with probability proportional to α.
The DPM model is based on DP prior for the mixing distribu-

tion. Such a model assumes that the RPM G itself is aleatory, drawn
from a DP. The DPM defines the following hierarchical Bayesian
structure:

G ∼ DP (G0, α),
θk|G ∼ G, k = 1, ..., n
zk|θk ∼ f(.|θk), k = 1, ..., n

DPM is a widely used model for density estimation and is among the
most successful ways of modeling multimodal distributions in a non-
parametric Bayesian framework. In fact, the parameter with which
an observation is associated implicitly clusters the data. In addition,
the DP provides a prior that makes it more likely to associate an ob-
servation with a parameter to which other observations have already
been associated. This reinforcement property is essential for infer-
ring finite mixture models. It can be shown under mild conditions

that if the data were generated by a finite mixture, then the DP pos-
terior is guaranteed to converge (in distribution) to that finite set of
mixture parameters [17].

3. DPM NOISE MODEL

Consider the following generic nonlinear dynamic system given in
state-space form:

{

xt+1 = gt(xt, wt)
yt = ht(xt, vt)

(5)

where t is the time index, xt is the state variable, yt is the mea-
surement, gt and ht are respectively the state and the observation
functions, and wt and vt are mutually independent i.i.d noise pro-
cesses. Such nonlinear dynamic systems are widely used to model
systems across many areas in signal processing such as target track-
ing, communications, etc. Here, we assume that the distribution of
the process noise is known. The measurement noise is assumed to
be impulsive, skewed and multimodal with an unknown distribution.

In this paper, we suppose that the measurement noise distribu-
tion F is a DPM with a heavy-tailed kernel that is the Cauchy distri-
bution. The mixed pdf f(.|θt) is thus assumed to be a Cauchy dis-
tribution with location parameter mt and scale parameter ct denoted
C(mt, ct). We place a Gaussian prior with mean ξ and covariance
κ−1, N (ξ, κ−1), on the parameter mt. For the parameter ct, an in-
verse Gamma prior with shape a and scale b, IG(a, b), is chosen.
We denote α the scale parameter of the DPM. The base distribution
G0 can be defined as the product of the parameters priors:

G0 ∼ N (ξ, κ−1)× IG(a, b) (6)

Finally, we obtain the following DPM model for the measurement
noise distribution:

G|Φ ∼ DP (G0, α)
θt|G ∼ G

vt|θt ∼ C(mt, ct)
(7)

where θt = {mt, ct} is the latent variable giving at each time index
t the location and the scale of the cluster and Φ =

{

α, ξ, κ−1, a, b
}

denotes the set of hyperparameters. We assume here that these hy-
perparameters are pre-specified and fixed. This model can be rewrit-
ten as vt ∼ F (vt) where F (vt) is the measurement noise distribu-
tion expressed as follows:

F (vt) =

∫

C(vt;m, c)dG(m, c) (8)

4. PARTICLE FILTER FOR SEQUENTIAL STATE AND
NOISE DENSITY ESTIMATION

In this paper, our main goal is to jointly estimate the state xt and the
latent variable θt at each time t conditional on the observations y1:t.
Within a Bayesian framework, we need to compute the joint pos-
terior pdf p(xt, θt|y1:t,Φ). Unfortunately, this pdf is analytically
intractable. Therefore, we propose to use SMC methods in order to
find an estimate of the required posterior pdf. The set of hyperpa-
rameters Φ is assumed to be known, therefore it is omitted in the
following. The posterior pdf p(xt, θt|y1:t) is approximated by a PF:

p(xt, θt|y1:t) ≃
N
∑

i=1

ω
(i)
t δ

x
(i)
t ,θ

(i)
t

(xt, θt) (9)
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where δ is the Dirac delta function, x(i)
t and θ

(i)
t are respectively

the state and the cluster particles drawn from the importance density
q(xt, θt|x0:t−1, θ1:t−1,, y1:t) and ω

(i)
t is the normalized importance

weight asociated to the ith particle.
Once the posterior density function of interest is identified, the

remaining task is the simulation of state and cluster particles from
the importance density. The choice of the importance density is cru-
cial because it determines the efficiency as well as the complexity
of the PF. In this paper, we consider the optimal importance den-
sity [18]. In our context, it is expressed as

q(xt, θt|x0:t−1, θ1:t−1,, y1:t) = p(xt, θt|x0:t−1, θ1:t−1,, yt) (10)

This importance density is interesting because it incorporates infor-
mation on the current observation. Consequently, the particles tend
to cluster in regions of high probability mass of the posterior pdf.

The sampling of x(i)
t and θ

(i)
t from (10) requires the analytical

expression of the optimal importance density. However, this pdf is
analytically intractable. Using Bayes’theorem, the considered im-
portance density can be written as

p(xt, θt|x0:t−1, θ1:t−1, yt)

=
p(yt|x0:t, θ1:t)p(xt|θ1:t, x0:t−1)p(θt|θ1:t−1)

p(yt|x0:t−1, θ1:t−1)
∝ p(yt|xt, θt)p(xt|θt, xt−1)p(θt|θ1:t−1)

(11)

Thus, an approximation of the optimal importance density can be ob-
tained using Monte Carlo method and importance sampling. For this

purpose, we consider, for each trajectories pair
(

x
(i)
0:t−1, θ

(i)
1:t−1

)

, a

set of NIS auxiliary particles
{

(x̆
(j)
t,i , θ̆

(j)
t,i )
}NIS

j=1
where state parti-

cles x̆(j)
t,i are sampled using the transition density p(xt|x

(i)
0:t−1):

x̆
(j)
t,i ∼ p(xt|x

(i)
t−1) (12)

and latent variable particles θ̆(j)t,i are sampled using the predictive dis-

tribution p(θ̆
(j)
t,i |θ

(i)
1:t−1) which admits the following Polya urn repre-

sentation (cf. section 2):

θ̆
(j)
t,i |θ

(i)
1:t−1 ∼

α

α+ t
G0 +

1

α+ t

t−1
∑

k=1

δ
θ
(i)
k

(θk) (13)

Using this set of particles, the optimal importance density can be
approximated by the following empirical distribution:

p(xt, θt|x
(i)
0:t−1, θ

(i)
1:t−1,, yt) ≃

NIS
∑

j=1

ω̆
(j)
t,i

Sω̆

δ
x̆
(j)
t,i

,θ̆
(j)
t,i

(xt, θt) (14)

where ω̆
(j)
t,i is the unnormalized weight associated to the jth pair of

particles (x̆(j)
t,i , θ̆

(j)
t,i ) defined as

ω̆
(j)
t,i = p(yt|x̆

(j)
t,i , θ̆

(j)
t,i ) (15)

and Sω̆ is the sum of unnormalized weights Sω̆ =
∑NIS

j=1 ω̆
(j)
t,i . In

order to sample the ith pair of particles (x
(i)
t , θ

(i)
t ) from the ap-

proximate optimal importance density given by (14), we just need

to pick one particle from the set
{

(x̆
(j)
t,i , θ̆

(j)
t,i )
}NIS

j=1
using weights

{

ω̆
(j)
t,i

}NIS

j=1
as probabilities of selection. This can be done as fol-

lows:

J ∼ Multinomial

(

ω̆
(1)
t,i

Sω̆

,
ω̆

(2)
t,i

Sω̆

, ...,
ω̆

(NIS)
t,i

Sω̆

)

(16)

Thus, the ith pair of particles (x(i)
t , θ

(i)
t ) is given by

(

x
(i)
t , θ

(i)
t

)

=
(

x̆
(j=J)
t,i , θ̆

(j=J)
t,i

)

(17)

Using the importance density given by (14), the importance weights
are updated according to the following relation:

ω
(i)
t ∝ ω

(i)
t−1p(yt|x

(i)
0:t−1, θ

(i)
1:t−1,) (18)

The pdf p(yt|x
(i)
0:t−1, θ

(i)
1:t−1,) can be written as:

p(yt|x0:t−1, θ1:t−1)

=

∫

p(yt|xt, θt)p(xt|θ1:t, x0:t−1)p(θt|θ1:t−1)dxtdθt
(19)

This integral can be approximated using the weighted set of particles
of the importance sampling strategy. In doing so, p(yt|x

(i)
0:t−1, θ

(i)
1:t−1)

is given by the sum of unnormalized weights Sω̆ .
The proposed PF for joint state and noise density estimation de-

noted by PF-JSNDE is summarized in algorithm 1.

Initialization
for i = 1 to N do

Sample x
(i)
0 ∼ p0(x0) ;

Sample θ
(i)
0 ∼ G0 ;

Initialize ω
(i)
0 = 1/N ;

end
for t = 1 to T do

for i = 1 to N do
for j = 1 to NIS do

Sample θ
(j)
t ∼ p(θt|θ

(i)
0:t−1) using (13);

Sample x
(i)
t ∼ p(xt|x

(i)
0:t−1) using (12) ;

Compute weights: ω̆(j)
t,i using (15) ;

end
Compute: Sω̆ =

∑NIS
j=1 ω̆

(j)
t,i ;

Normalize weights: ω̆(j)
t,i = ω̆

(j)
t,i /Sω̆ ;

Select a particle indice J ∈ {1, 2, ..., NIS}

according to weights
{

ω̆
(j)
t,i

}NIS

j=1
using (16);

Set x(i)
t = x̆

(J)
t,i and θ

(i)
t = θ̆

(J)
t,i ;

Compute importance weights: ω(i)
t ∝ ω

(i)
t−1Sω̆ ;

end
Normalize importance weights
ω

(i)
t = ω

(i)
t /

∑N

j=1 ω
(i)
t , i = 1, ..., N ;

if Neff < η then Resampling step;
end

Algorithm 1: PF-JSNDE algorithm
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5. SIMULATIONS

The performance of the proposed method is studied considering the
following nonlinear time series model which has been extensively
used in literature for benchmarking numerical filtering techniques
[19–21]:







xt+1 = 0.5xt + 25
xt

1 + x2
t

+ 8 cos(1.2(t+ 1)) + wt

yt =
x2
t

20
+ vt

This model has been simulated with the following parameters:
x0 ∼ N (0, 10), wt ∼ N (0, 1), F = 0.3S1.3(0, 2,−10) +
0.7S1.6(0.5, 1.5, 0). The hyperparameters of the base distribution ξ,
κ−1, a, b are respectively set to 0, 50, 5 and 4. We fixed the scale pa-
rameter of the DPM α to 3. The proposed PF has been implemented
with N = 200 particles and NIS = 100 auxiliary particles. Results
are illustrated in the different plots of Fig. 1, Fig. 2 and Fig. 3. Fig. 1
shows the estimated signal as well as the true and the observed ones.
We also plot the measurement noise signal and the estimation error
between the true and the estimated signals. From these plots, it can
be seen that despite the fact that the noise is important, the state xt is
correctly estimated. Fig. 2 depicts the estimated measurement noise
density as well as the true one. We can observe that the estimated
pdf is close to the true one. In Fig. 3, the evolution over time of the
Kullback-Leibler distance between the true and the estimated noise
density is reported for each time index. It can be remarked that the
Kullback-Leibler distance converges to a low value close to zero.
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Fig. 1. Top picture: Measurement noise signal. Middle picture: True
(dashed line), estimated (solid line) and observed (dash-dotted line)
signals. Bottom picture: Error between the true and the estimated
states.
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Fig. 2. True (dashed line) and estimated (solid line) noise density at
time t=300.
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Fig. 3. Evolution over time of the Kullback-Leibler distance between
the true and the estimated noise density.

6. CONCLUSIONS

In this paper, we present a novel approach allowing the joint estima-
tion of state and measurement noise density in nonlinear dynamic
systems using SMC methods. The measurement noise considered
here is an α-stable process. A flexible Bayesian nonparametric noise
model based on DPMs is introduced. The originality of this work
consists in using DPM to model an α-stable process as an infinite
mixture of Cauchy distributions. Based on the performed simula-
tions, it can be concluded that the state estimation is possible even if
the measurement noise density is unknown. Furthermore, we have
shown that a DPM of Cauchy distributions is well suited to model
an α-stable process. This result is very interesting since it provides
a solution to the problem of the non-existence of an analytical ex-
pression for the pdf of α-stable distributions. Finally, it should be
noted that the proposed method is not limited to the case of noise
distributed according to a mixture of α-stable distributions and can
be applied to other types of noise. In future works, we plan to make
inference on the hyperparameters of the base distribution.
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