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ABSTRACT

The most common approaches for estimating multivariate
density assume a parametric form for the joint distribution.
The choice of this parametric form imposes constraints on the
marginal distributions. Copula models disentangle the choice
of marginals from the joint distributions, making it a powerful
model for multivariate density estimation. However, so far,
they have been widely studied mostly for low dimensional
multivariate. In this paper, we investigate a popular Copula
model – the Gaussian Copula model – for high dimensional
settings. They however require estimation of a full correla-
tion matrix which can cause data scarcity in this setting. One
approach to address this problem is to impose constraints on
the parameter space. In this paper, we present Toeplitz cor-
relation structure to reduce the number of Gaussian Copula
parameter. To increase the flexibility of our model, we also
introduce mixture of Gaussian Copula as a natural extension
of the Gaussian Copula model. Through empirical evaluation
of likelihood on held-out data, we study the trade-off between
correlation constraints and mixture flexibility, and report re-
sults on wine data sets from the UCI Repository as well as
our corpus of monkey vocalizations. We find that mixture of
Gaussian Copula with Toeplitz correlation structure models
the data consistently better than Gaussian mixture models
with equivalent number of parameters.

Index Terms— Copula, Mixture Models

1. INTRODUCTION

Estimating multivariate distribution is still a challenging task
in probability theory and statistics. The standard approach
is to focus the attention entirely on choosing a parametric
form for the joint distribution of the variables. The choice
of joint distribution automatically dictates a specific form for
marginal distributions, which may not be appropriate for a
given application or data. There is no flexibility in picking
a different form of distribution for the marginals even when
such a misfit is known a priori. Except for the mathemati-
cal convenience, there is no real reason why the choice of the
joint and the marginals have to be tightly coupled. For exam-
ple, though the marginal distributions are the same in the two

distributions illustrated in the Figure 1, their joint distribution
are markedly different.
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Fig. 1. Multivariate distributions may have similar marginal
but distinctly different joint distributions.

It would be convenient if the choice of suitable marginal
distribution is decoupled from that of the joint distribution.
Sklar’s theorem provides the necessary theoretical foundation
to decouple these choices [1]. He showed that any joint distri-
bution can be uniquely factorized into its univariate marginal
distributions and a Copula distribution. The Copula distribu-
tion is a joint distribution with uniform marginal distributions
on the interval [0, 1]. More formally, Sklar’s theorem states
that any continuous Cumulative Distribution Function (CDF)
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can be uniquely represented by a Copula CDF:

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), ..., Fn(xn)) (1)

where F is an n-dimensional CDF with the marginal CDFs
F1(x1), . . . , Fn(xn) and C is a CDF from the unit hypercube
[0, 1]n to the unit interval [0, 1] called Copula CDF. The joint
density function can be computed by taking the n-th derivative
of Equation(1):

f(X) =
∂nC(F1(x1), . . . , Fn(xn))

∂x1 · · · ∂xn
(2)

where X = [x1, x2, . . . , xn]T . By applying the chain rule
to (2),:

f(X) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) · · · ∂Fn(xn)

×Πn
i=1

dFxi
(xi)

dxi
= c(F1(x1), F2(x2), . . . , Fn(n))Πn

i=1fi(xi) (3)

where f1(x1), . . . , fn(xn) are the marginal densities of f and
c(·) is the Copula density function.

Equation (3) shows that any continuous density function
can be constructed by combining a Copula function and a
set of marginal distributions. Furthermore, the Copula func-
tion can be chosen independent of the marginal distribution.
Equation (3) suggests a method for estimating the multivari-
ate density. Since the estimation of the marginal densities are
straightforward, the problem of density estimation can be re-
duced to the estimation of the Copula density function.

Related Previous Work: There are several well-known
two dimensional Copula function but finding an appropriate
parametric form for multivariate Copula function is still a
challenging task [2]. Tree average Copula density is the first
work that tries to address the problem [3]. It uses tree struc-
ture between the random variable and shows multivariate
Copula function can be factorized into several two dimen-
sional Copula functions but the tree structure assumption is
far from realistic. They overcome this limitation by defining a
prior over all possible trees and then computing the Bayesian
model by averaging over all possible spanning trees. Copula
Bayesian Networks is another method for constructing the
multivariate Copula function [4]. It uses the Bayesian Net-
work to factorize the Copula density function into smaller
Copula functions. They also show how to define conditional
density based on the copula model.

The Gaussian Copula density function has a natural exten-
sion for high dimensional domain, albeit it suffers from too
many parameters. In the next section, we present the Gaus-
sian Copula density and introduce Toeplitz structure to limit
their parameters.

2. GAUSSIAN COPULA MODEL

2.1. Definition

Gaussian Copula density is the most common multivari-
ate Copula function and it can be obtained by applying the
method of inversion to standard multivariate Gaussian [5]:

cgaus(U ;R) =
1

|R| 12
exp{−1

2
UT (R−1 − I)U} (4)

Rij =
cov(xi, xj)√
var(xi)var(xj)

where R is the correlation matrix.
The Gaussian Copula model can be constructed by substi-

tuting the Gaussian Copula density function into Equation (4):

f(X;R,Λ) = cgaus(U ;R)

n∏
i=1

fi(xi;λi) (5)

where ui = Φ−1(Fi(xi)) and Φ−1 is the quantile function of
standard normal distribution.

Multivariate Gaussian Copula vs. Multivariate Gaus-
sian Distribution: The main difference between the Gaussian
Copula model in Equation (5), and standard Gaussian distri-
bution is that the marginal density functions in the Gaussian
distribution are necessarily Gaussian while the marginal den-
sity functions of the Gaussian Copula model can be any con-
tinuous density and this capability makes the Gaussian Cop-
ula model more flexible than the Gaussian distribution.

2.2. Estimation

Generally, there are three methods to estimate the parameters
of the Gaussian Copula model: Full Maximum Likelihood
(FML), sequential 2-Step Maximum Likelihood (TSML)
and Generalized Method of Moments. For more informa-
tion,see [5]. Since the TSML is more straightforward, we
adopt this approach. It consists of two steps. The first step
is to estimate the marginal (univariate) cumulative functions
{F̂i(·)}ni=1 using nonparametric kernel density estimation
and map all data points into new space, the Copula space.

U = [Φ−1(F̂1(x1)), . . . ,Φ−1(F̂1(xn))] (6)

The second step is estimating the parameter of the Gaus-
sian Copula density functionR. The correlation matrixR can
be computed using maximum likelihood in Copula space.

R̂ = argmax
R

n∑
i=1

[
− log|R| − UT

i (R−1 − I)Ui

]
(7)

where n is the number of data points. The equation (7) has a
closed-from solution.

R̂ =
1

n

n∑
i=1

UiU
T
i (8)
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The full correlation matrix has O(n2) parameters and not
appropriate when n is large or for moderate-size data set. Liu
et. al. address this problem by adding L1 sparsity constraint
to equation (7) [6]. Zezula also proposes two special struc-
tures for correlation matrices to reduce the number of parame-
ters [7]. He uses uniform and serial correlation structures and
estimate their parameters based on the Kandall’s method. The
uniform structure assumes that all entries in correlation ma-
trix are equal (Rij = ρ) while in serial correlation, the entries
are Rij = ρ|i−j|. Since these structure both have only one
free parameter to estimate, they have poor representational
power to model real data. Toeplitz structure is a common way
to increase the degree of freedom in correlation matrix while
keeping the number of free parameters limited. In this paper,
we use Toeplitz structure as an extension to Zezula’s work
and show its combination with mixture model can provide a
richer Copula model.

3. GAUSSIAN COPULA WITH TOEPLITZ
CORRELATION STRUCTURE

In this section, we assume that the Correlation matrixR in (4)
has Toeplitz structure and present two simple methods: taper-
ing and banding to estimate Toeplitz correlation matrix. Cai
et. al. have shown theoretically that Toeplitz matrix can be es-
timated effectively in high-dimensional data sets using these
methods [8]. Their method consists of three steps. First,
it computes the sample full Correlation matrix as in Equa-
tion (7). The second step is to average across the each diago-
nal entries.

R̃m =
1

i− j
∑

m=i−j
R̂i,j (9)

Finally, the entries that are far from the main diagonal are
tapered with a function.

Rtaper
i,j = a|i−j|R̃|i−j| (10)

ak =


1 for k ≤ n/2
2− 2k

n for n/2 < k ≤ n
0 otherwise

(11)

The banding version also can computed from the tapered ma-
trices as shown below where I is the indicator function and K
is the bandwidth of Band.

RBand
i,j = Rtaper

i,j × I(|i− j| ≤ K) (12)

Through empirical evaluation, we found that the Tapering
method works better than the Banding method, so we use the
Tapering method in the rest of this paper.

4. MIXTURE OF COPULA MODEL

One common way to construct a richer Copula function is
use mixture model. Since the Copula function is a valid den-
sity function, the convex mixture of Copula functions is still

a valid Copula density:

c(U) =

M∑
i=1

wicgaus(U ;Ri),

M∑
i=1

wi = 1 (13)

The parameters of the mixture model can be computed by
Expectation Maximization (EM) with random initialization.

5. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
method with two other models – Naive non-parametric esti-
mator and Gaussian mixture models. We evaluate the models
in terms of average log likelihood over many held-out sets.

The naive models assumes the variables are independent
and hence the joint probability is simply the product of the
marginals.

f̂(X) =

M∏
j=1

f̂j(xj) (14)

In the case of naive non-parametric model, the univariate
marginal densities are modeled by Gaussian kernel density
estimation.

f̂(x) =
1

Nh

N∑
i=1

k(
x− xi
h

) (15)

where h is the bandwidth of the Gaussian kernel and can be
computed based on the empirical standard deviation σ̂.

h =
(4σ̂5

3N

)0.2
(16)

For the Copula model, we compute the marginal cumu-
lative functions to transform the data points into the Copula
space. They are computed directly from Equation (15). The
effect of extreme values (long-tail) of the marginals are mini-
mized using the Winsorized function [6].

5.1. Wine Quality Data Set

In the first experiment, we use red wine data set [9], which
comprises of 1599 samples. Each sample has 11 attributes
relevant for predicting the quality of wine. This data is a good
representative of many natural tasks where the marginals dif-
fer considerably across feature components. We randomly
split the data set into two equal sets and use one of them
as train and other one as train.we repeat the experiment 100
times. This setting has been used previously by Elidan [4]
to show the performance of Copula Bayesian network. Ta-
ble 1 shows the performance of several methods in terms of
averaged log likelihood over held-out sets.The difference be-
tween Gaussian and nonparametric naive models shows that
the marginal densities are far from the Gaussian assumption.
Both Toeplitz Gaussian Copula model and Gaussian distribu-
tion with diagonal Covariance have 2n parameters. However,
the Toeplitz Gaussian Copula fits the data significantly better
than the Gaussian counterpart.
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Method Mean std
Naive Models

Gaussian -6.13 0.17
Non-parametric -3.84 0.20

Single Component
Gaussian, cov=full -3.86 0.17
Copula, cov=full -1.12 0.21
Copula, cov=uniform -3.82 0.20
Copula, cov=Toeplitz -3.40 0.21

Multiple Components
Gaussian Mix., n=2, cov=full -2.21 0.21
Gaussian Mix., n=2, cov=diag -4.48 0.17
Gaussian Mix., n=3, cov=diag -4.25 0.28
Copula Mix., n=2, cov=Toeplitz -3.30 0.22
Copula Mix., n=3, cov=Toeplitz -3.21 0.21

Table 1. Averaged log-likelihood on the Wine data set

5.2. Monkeys’ vocalization data set

In the second experiment, we use a corpus of animal vocaliza-
tion. The corpus consists of 9 hours of recordings from rhesus
macaques, collected for an ongoing study. The vocalizations
were sampled at 5520Hz using a collar-mounted microphone.
The segments corresponding to vocalization were identified
manually. In all, there were 1225 segments of vocalizations.
We computed the average Perceptual Linear Predictors (PLP)
features for each segments. Note, PLPs are standard features
employed in automatic speech recognition systems. As in the
previous section, we evaluate a naive non-parametric model,
Gaussian mixture models, and Gaussian Copula models on
this task. Table 2 shows the performance of several meth-
ods in terms of log likelihood for monkey’s data. The results
demonstrate that the Toeplitz assumption for speech-like data
is more natural where the correlation between feature com-
ponents tapers off naturally when the components are further
apart from each other. Thus, they provide nearly the same
benefits as a full correlation Copula model but with fewer pa-
rameters.

Summary of Results: The likelihood trends are consis-
tent across both data sets, although the relative improvements
are different. Under the naive models (assuming each di-
mension is independent), the non-parametric models fit the
marginal distributions better than the Gaussian distribution.
In other words, this shows that forcing the marginals to be
Gaussian is a bad idea in these example of real world data
sets. In both data sets, there is a significant correlation be-
tween the feature components and this is apparent from the
big jump in likelihood from naive models to full covariance
Gaussian distribution. Modeling the multivariate correlations
with Copula model is even better. Of course, drastic assump-
tions of the uniform correlations hurts the performance badly.
By modeling the correlation with Toeplitz structure, the per-

Method Mean std
Naive Models

Gaussian 23.16 0.21
Non-parametric 23.65 0.20

Single Component
Gaussian, cov=full 25.90 0.17
Copula, cov=full 26.11 0.20
Copula, cov=uniform 23.68 0.20
Copula, cov=Toeplitz 24.34 0.23

Multiple Components
Gaussian Mix., n=2, cov=full 26.85 0.16
Gaussian Mix., n=2, cov=diag 24.18 0.17
Gaussian Mix., n=3, cov=diag 24.63 0.13
Copula Mix., n=2, cov=Toeplitz 24.40 0.23

Table 2. Averaged log-likelihood on the vocalization data.

formance can be improved. The mixture components bring in
additional degrees of freedom and help model the data better.
Specifically, in the Wine data set, increasing the parameters
in the Copula model by 1, 11 and 55, the likelihood improves
by 0.02, 0.38 and 2.72 respectively with respect to naive non-
parametric models. In the case of monkey vocalization data,
increasing the parameters in the Copula model by 1,13 and
78 improves the likelihood by 0.03, 0.69 and 2.46 respec-
tively. For equivalent number of parameters, the mixture of
Copula models with Toeplitz correlation structure models the
data consistently better than their Gaussian mixture counter-
parts.

6. CONCLUSIONS

In this paper, we present a new Gaussian Copula model with
Toeplitz correlation structure. They model data better than
naive Gaussian models but with only one additional parame-
ter. We extend the Gaussian Copula to include mixtures. As
evident from the experimental results, this allows better con-
trol of the trade-off between number of parameters and the
representational power of the model. The mixture of Gaus-
sian copula with Toeplitz models the data consistently better
than the Gaussian mixture models with equivalent number of
parameters.
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