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ABSTRACT

The Volterra-PARAFAC (VP) nonlinear system model, which

consists of a FIR filterbank followed by a memoryless nonlin-

earity, aims at offering a good compromise between accuracy

and parametric complexity. Here, for an even better com-

promise, we propose a generalization with IIR filters (VPI

model) and evaluate both models. For the evaluation, we con-

sider the concrete case of two audio loudspeakers and initially

compute reference Volterra kernels from their known physi-

cal state-space models, using an efficient procedure. Then,

VP and VPI models are derived and their accuracy is tested.

As shown, the VPI models have in this case only 15 to 26

% of the parametric complexity of VP models with the same

accuracy, which points to a great potential for accurate and

efficient nonlinear system modeling.

Index Terms—Volterra-PARAFACmodel, nonlinear sys-

tem modeling, IIR filters

1. INTRODUCTION

Several nonlinear approaches to system modeling and identi-

fication have recently been proposed [1, 2, 3, 4, 5]. As has

been shown by many authors, nonlinear models [6, 7, 8] are

able to provide good approximations in several contexts in

which linear ones are not, due to a significantly nonlinear be-

havior of some system of interest. Examples of this include

acoustic echo cancellation [1], satellite channel equalization

[2] and physiological process modeling [5].

Because of the difficulty in representing all kinds of

nonlinear physical systems in an unified and useful man-

ner, a wide range of formalisms and structures appears in

the literature, such as NARMAX models [9], block-oriented

structures [10] and Volterra filters [1, 4, 11]. The widely

adopted Volterra filter (VF) model, in particular, is based on

a continuous-time functional expansion employed by Wiener

in his pioneering work on nonlinear system modeling [5, 6].

The set of VFs is fairly general, in the sense that they can

approximate with arbitrary precision a wide class of physical

systems (more specifically, systems with fading memory) [8],

and have also the advantage of being feedforward and thus in-

herently stable. On the other hand, it is well known that VFs

This work was supported by FAPESP1 and CNPq2 (153549/2012-2).

are quite inefficient in terms of their parametric complexity

and therefore are not appropriate in many circumstances.

A promising alternative that has recently been proposed is

the Volterra-PARAFAC (VP) model [3]. It consists of a mem-

oryless nonlinearity preceded by a linear FIR (finite impulse

response) filterbank, which can be obtained from a conven-

tional VF by means of a tensor decomposition approxima-

tion. This strategy retains many of the good features of VFs

and may be able to model nonlinear systems accurately, with

a significant reduction in parametric complexity.

To evaluate this potential for accurate and efficient mod-

eling of the VP and other alternative models, typical phys-

ical models (PM) of systems of interest can be considered

[3, 12, 13]. In particular, a precise quantitative assessment

about model efficiency and accuracy can be made with a set of

reference Volterra kernels computed from the PM. This com-

putation is not trivial but is feasible with the use of the algo-

rithm we proposed in [12], where this approach for evaluating

alternative nonlinear structures is also discussed3.

In the above context, and considering that low-order IIR

(infinite impulse response) filters often provide good models

of linear physical systems, a question that naturally arises is

whether a structure similar to the VP but containing a low-

order IIR filterbank−which would result in even higher com-

plexity reduction− has the potential to provide accurate mod-

els of nonlinear systems. This is the main problem addressed

in this paper, which is organized as follows.

Section 2 describes the considered configuration and

briefly reviews Volterra modeling and the method for com-

puting reference kernels proposed in [12]. Section 3 reviews

the Volterra-PARAFAC (VP) model and discusses its gen-

eralization using an IIR filterbank. Simulation results are

presented in Section 4. Finally, Section 5 brings the conclud-

ing remarks and perspectives for future work.

2. REVIEW OF VOLTERRA MODELING

In the following, we consider the configuration shown in

Fig. 1, which occurs in many applications, such as acous-

tic echo cancellation, active noise control and closed loop

system linearization. The elements involved are an ideal

3A more extensive article is in preparation.
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Fig. 1. Configuration considered for the evaluation.

digital/analog converter, a reconstruction filter G1(jΩ), the
physical system of interest, which is denoted by the V [·] op-
erator and assumed to be time invariant, an anti-aliasing filter

G2(jΩ) and a analog/digital converter.

2.1. Conventional Volterra modeling

Assuming that a VF of order P is used to model the resulting

discrete-time structure of Fig. 1, its output, y(n), is written as

y(n) =

P∑

p=1

yp(n), (1)

where yp(n) is the p-th order component given by

yp(n) =

Np−1∑

k1=0

...

Np−1∑

kp=kp−1

vp(k1, ..., kp)

p∏

i=1

u(n− ki), (2)

in which u(n) is the input and vp(k1, ..., kp) is a causal

Volterra kernel with memory extension (length) of Np sam-

ples. It should be noted that the kernels involved in (2) are

triangular [7], and therefore are allowed to have non-zero val-

ues only for time indexes k1, ..., kp satisfying k1 ≤ ... ≤ kp.
From a practical point of view, the model (1)–(2) has three

desirable properties: it can approximate any fading memory

system within arbitrary precision, as shown in [8]; it is by def-

inition stable in the BIBO (bounded input, bounded output)

sense, since (1) is a finite summation; and its output is clearly

linear in the parameters vp(k1, ..., kp), which permits, in prin-

ciple, adapting them with standard algorithms like NLMS and

RLS [4]. However, in many concrete situations, those advan-

tages are overridden by the fact that a huge number of param-

eters is necessary to meet some prespecified precision level.

Indeed, one can easily see that this number grows rapidly with

N2, ..., NP and P , rendering its use and adaptation unfeasible

when a high order or a long memory is necessary.

2.2. Reference kernels computation

The method proposed in [12] permits assessing whether a VF

can efficiently model a system of interest. Basically, reference

kernels are computed from a known PM and used to construct

some VFs with different structural characteristics. Then, by

evaluating how accurately those VFs approximate the PM via

a Monte Carlo experiment using typical inputs, one can esti-

mate which values of P,N1, ..., NP are sufficient to meet the

desired precision. Note that, if the reference kernels were es-

timated from data produced by the PM, they would involve

uncertainties, while with the method described they incorpo-

rate only system characteristics. In the rest of this section, we

succinctly review that method; for further details see [12].

The first step consists in applying the Carleman bilin-

earization (also called Carleman linearization [7]) to the PM,

obtaining as a result a set of bilinear equations whose so-

lution contains the exact components of orders 1 up to P
of the Volterra series representation of the PM (which is, in

general, of infinite order). For this step, [12] describes an

efficient algorithm which determines each equation of that set

recursively and does not involve redundant equations, unlike

a direct implementation of the formulation of [7, Sec. 3.3].

Then, the first P kernels of that Volterra series representation

can be calculated from the bilinear equations analytically in

the time or in the frequency domains [7].

Since the reference kernels must represent the entire struc-

ture of Fig. 1, they must incorporate the effects of the filters

G1 and G2. Hence, for the second step, the simplest choice

is to calculate the kernels of the PM in the frequency domain

and then use the formulas for the interconnection of linear and

nonlinear systems given in [7], through which the frequency

domain kernels that model the input/output relation between

the signals u(t) and y(t) of Fig. 1 may be expressed by

H̃p(jΩ1, ..., jΩp) =

(
p∏

q=1

G1(jΩq)

)
Hp(jΩ1, ..., jΩp)

×G2(jΩ1 + ...+ jΩp), (3)

for 1 ≤ p ≤ P , where Hp is the p-th order frequency domain

kernel associated with the PM. Finally, assuming that a sam-

pling frequency Ωs is appropriately chosen, the discrete-time

reference p-th order kernel can be obtained by sampling H̃p

uniformly over the domain −Ωs/2 < Ωi ≤ Ωs/2 and then

computing its p-dimensional IFFT of length Np [12, 14].

3. VOLTERRA-PARAFAC IIR MODEL

The high parametric complexity shown by a VF in some cir-

cumstances severely hinders its use and estimation, due to

the implied computational cost. In addition, it also degrades

its performance when operating in an adaptive fashion, since

the steady-state misadjustment increases. Therefore, several

strategies have been proposed for alleviating such complex-

ity by noting that, in many cases–and especially for physical

systems–, the essential information of a Volterra kernel can be

captured by a structure of much smaller algebraic dimension.

A particularly effective strategy, which is based on ten-

sor algebra concepts, was proposed in [3] and leads to the

Volterra-PARAFAC (VP) model. In order to review this

model, some notation must be introduced. A p-th order tensor
is a numerical array of geometric dimension p, being denoted
by a capital calligraphic letter as, e.g., T ∈ C

M1×...×Mp . An

element of T is written as [T ]m1,...,mp
, where 1 ≤ mi ≤ Mi.

5746



When all Mi = M , T is called cubical [15] and its space is

denoted by C
M(p)

. A cubical tensor is said to be symmetric

if [T ]m1,...,mp
is invariant under a permutation ofm1, ...,mp.

3.1. Volterra-PARAFAC model

The VP model relies on the PARAFAC (PARAllel FACtor)

decomposition [15], through which any symmetric tensor

T ∈ C
M(p)

may have its elements uniquely written as [3]

[T ]m1,...,mp
=

Rp∑

r=1

[ap,r]m1
[ap,r]m2

...[ap,r]mp
, (4)

where the vectors ap,r ∈ C
M are called parallel factors and

Rp is the symmetric rank of T [3, 15]. Note that (4) is a

generalization of the decomposition of a symmetric matrix

into a sum of rank-1 matrices. To the extent of our knowledge,

no algorithm capable of both determining Rp and computing

the decomposition for p ≥ 3 is known, but there are practical

alternatives, such as the simple ALS [16]. This algorithm can,

in many cases, find a good approximation of the form (4) for a

given Rp by seeking the minimization of the Frobenius norm

of the error, although its convergence to a stationary point of

such cost function is not guaranteed [16].

Now, by observing that any discrete-time finite Volterra

kernel vp with length Np admits an equivalent symmetric

form [3, 7] (in the sense that they produce identical com-

ponents yp(n) for a given u(n)) which may be viewed as a

symmetric tensor Vp ∈ C
N(p)

p , we can rewrite (2) as

yp(n) =

Np−1∑

k1=0

...

Np−1∑

kp=0

[Vp]k1+1,...,kp+1

p∏

i=1

u(n− ki), (5)

and then apply the decomposition (4), which yields [3]

yp(n) =

Rp∑

r=1

[aTp,ru
(p)(n)]p, (6)

where u(p)(n) = [u(n) ... u(n−Np + 1)]T and the vectors

ap,r are the parallel factors of Vp. Structurally, this relation

can be represented as shown in Fig. 2. As we can see, the

resulting structure is essentially a Wiener model [5] with a

FIR filterbank followed by a memoryless nonlinearity with no

cross-terms. Although the output it is no longer linear in the

parameters, the interest in this structure comes from the fact

that, for a Volterra kernel with smallRp, it is very compact: it

has NpRp parameters, while a triangular p-th order Volterra

kernel has (Np + p− 1)!/[p!(Np − 1)!] parameters [3].

3.2. An IIR generalization

A direct generalization of the VP model is the Volterra-

PARAFAC IIR (VPI) model, where an IIR filterbank is used

u(n)

✲ ap,1 ✲ (·)p
❅❘...

...
...

✲ ap,Rp
✲ (·)p �✒

✐+ ✲ yp(n)

Fig. 2. p-th order subsystem of a Volterra-PARAFAC model.

instead of a FIR one. This is motivated by the expectation

that a similarity exists with the linear system case, where a

low-order IIR model provides, in many cases, an efficient

discrete-time representation of the dynamics of some system.

Our goal here is to assess if the VPI model has the potential

to fulfill this expectation for nonlinear systems of interest.

To this end, a connection could be sought with the analyt-

ical discretization discussed in [5, Sec. 3.5]. However, this is

a hard problem in general and, to the best of our knowledge,

no simple and general method to tackle it exists.

Our approach is rather to compute the Volterra kernels

from the PM, as described in Section 2.2, and then obtain

the IIR filters of the VPI model from the kernels. This second

step, ideally, would require an extension of the ALS algorithm

(for instance) to the IIR case, in order to jointly determine the

filterbank. At least for an initial assessment, however, it is

sufficient to obtain the IIR filters individually from the FIR

filters of a VP model, by using a standard order reduction

procedure [17], [18, p. 153].

4. PERFORMANCE EVALUATION

We consider now the application of the VP and VPI models

to two loudspeakers for which accurate PMs have been previ-

ously derived in the literature. Note that coping with the non-

linear behavior of these devices can be crucial in applications

such as acoustic echo cancellation and active noise control.

Loudspeaker A is a small (82 mm in diameter) 4Ω bass au-

tomotive loudspeaker [19] and loudspeaker B is a larger (130

mm in diameter) 4Ω bass loudspeaker [20].

4.1. Model derivation

The basic procedure to obtain the models is as follows. 1) Us-

ing the method described in Sec. 2.2, with a sampling rate of

5 kHz and length Np = 100 for all p, P = 4 Volterra kernels

are computed, providing an initial underlying VF model. 2)

With this VF and given the number of factors Rp, the ALS

algorithm is used to obtain an ancillary VP model. 3) The

FIR filters of this model are approximated by IIR filters, pro-

viding the VPI model. As exemplified in Fig. 3 for p = 2
and r = 2, if the FIR impulse responses ap,r are smooth

they can frequently be approximated by IIR filters with or-

ders Mp,r ≪ Np = 100. This is done by obtaining a bal-

anced realization and then eliminating the state elements as-

sociated with the smaller Hankel singular values. Such ap-

proximation is favored when the FIR impulse responses have
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Fig. 3. Example of impulse response of VP FIR factor (– –)

and order 8 IIR approximation (—).

decayed to almost zero afterNp samples, as in Fig. 3. 4) This

same behavior suggests that a more efficient VP model with

Np < 100 is possible, which is obtained by applying the ALS
algorithm to truncated versions of the Volterra kernels.

4.2. Comparison of VP and VPI models

Vectors y of 500 output samples of a PM that comprises the

loudspeaker and filters G1 and G2 (see Fig. 1) are obtained

by numerical integration, using as inputs zero mean Gaus-

sian signals with 625 Hz bandwidth and variable power σ2
u.

The sample fit of a realization is defined as FIT(ŷ) = 100 ×
(1−||y − ŷ||/||y − µy||), where µy is the sample mean and

ŷ is the output sample vector produced by a given model.

Initially, models VF with Np = 100 for all p and models

VP and VPI with Rp = 5 for all p, whose lengths and or-

ders are given in Table 1, are compared. In Table 1 it can be

seen that for loudspeaker A and Rp = 5, for instance, the VP
model has lengths N1 = 100 and Np = 80 for p > 1 and the

VPI model has orders M1,1 = 7, M2,1 = 6, M2,2 = M2,3 =
7,M2,4 = 8,M2,5 = 9 andMp,r = 8 for p > 2 and all r. The
average fit over 100 realizations of the input, as a function of

input power σ2
u and for model orders P = 1, ..., 4, is shown

in Fig. 4. As expected, as σ2
u grows, higher order models are

required to accurately represent the loudspeakers. As also ex-

pected, the larger loudspeaker B admits higher input power

before its nonlinear behavior becomes important. The FIT of

models VP and VPI are almost identical, but for P = 4 the

total parameter count of VPI is about only 0.20 times that of

VP for both loudspeakers, as can be seen in Table 1.

Now, Fig. 5 shows a comparison of VP and VPI models

Table 1. Model lengths/orders, total parameter counts and

parameter reduction factor (p = 1, 2, 3, 4; r = 1, 2, . . . , Rp).

Loud. R
†
p

VP VPI ΣI

ΣFNp ΣF Mp,r ΣI

A [19]

3 100/80/80/80 820 7/6/6/5 126 0.15

5 100/80/80/80 1300 7/*/8/8 264 0.20

10 100/80/80/80 2500 10/10/10/10 651 0.26

B [20] 5 100/90/90/90 1450 8/ ‡ / § / 8 266 0.18

†R1 = 1 ∗M2,r ={6,7,7,8,9} ‡M2,r ={6,6,7,9,10} §M3,r ={7,7,7,9,9}

ΣF =
∑P

p=1
RpNp ΣI =

∑P
p=1

∑Rp

r=1
(2Mp,r + 1)
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Fig. 4. Loudspeakers A (top) and B (bottom): FIT of VF (�),

VP ( ) and VPI (�) for P = 1 (··), 2 (−·), 3 (– –) and 4 (—).
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Fig. 5. Loudspeaker A: FIT of VP (—) and VPI (– –).

for loudspeaker A, with P = 4 and Rp = 3, 5 and 10. Al-

most identical FITs can be obtained in all cases, but, as can

be seen in Table 1, their total parameter count relation rises

from 0.15 to 0.26 with Rp, reflecting the accumulation of the

approximation errors of the not jointly designed IIR filters.

5. CONCLUDING REMARKS

In this contribution, we considered a generalized version of

the VP model in which the filterbank is IIR and described a

relatively simple procedure to evaluate the performance of the

resulting model when a typical PM of some system of interest

is known a priori. The simulation results presented show that

such model may lead to an excellent compromise between

precision and parametric complexity. As a continuation of

this work, we intend to develop a procedure for a joint design

of the IIR factors which compose the VPI model.

5748



6. REFERENCES

[1] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal,

J. Arenas-Garcı́a, and W. Kellermann, “Adaptive Com-

bination of Volterra Kernels and its Application to Non-

linear Acoustic Echo Cancellation,” IEEE Transactions

on Audio, Speech and Language Processing, vol. 19, no.

1, pp. 97–110, January 2011.

[2] B. F. Beidas, “Intermodulation Distortion in Multi-

carrier Satellite Systems: Analysis and Turbo Volterra

Equalization,” IEEE Transactions on Communications,

vol. 59, no. 6, pp. 1580–1590, June 2011.

[3] G. Favier, A. Y. Kibangou, and T. Bouilloc, “Nonlin-

ear system modeling and identification using Volterra-

PARAFAC models,” International Journal of Adaptive

Control and Signal Processing, vol. 26, no. 1, pp. 30–

53, January 2012.

[4] M. Zeller and W. Kellermann, “Fast and Robust Adap-

tation of DFT-Domain Volterra Filters in Diagonal Co-

ordinates Using Iterated Coefficient Updates,” IEEE

Transactions on Signal Processing, vol. 58, no. 3, pp.

1589–1604, March 2010.

[5] V. Marmarelis, Nonlinear Dynamic Modeling of Phys-

iological Systems, John Wiley & Sons, Hoboken, NJ,

USA, 2004.

[6] N. Wiener, Nonlinear problems in random theory, Mas-

sachusetts Institute of Technology, 1958.

[7] W. J. Rugh, Nonlinear System Theory: The

Volterra/Wiener Approach, Johns Jopkins University

Press, Baltimore, MD, 1981.

[8] S. Boyd and L. Chua, “Fading memory and the problem

of approximating nonlinear operators with Volterra se-

ries,” IEEE Transactions on Circuits and Systems, vol.

CAS-32, no. 11, pp. 1150–1161, November 1985.

[9] H.-K. Jang and K.-J. Kim, “Identification of Loud-

speaker Nonlinearities Using the NARMAX Modeling

Technique,” Journal of the Audio Engineering Society,

vol. 42, no. 1/2, pp. 50–59, February 1994.

[10] A. Y. Kibangou and G. Favier, “Tensor analysis-based

model structure determination and parameter estimation

for block-oriented nonlinear systems,” IEEE Journal of

Selected Topics in Signal Processing, vol. 4, no. 3, pp.

514–525, June 2010.

[11] V. J. Mathews and G. L. Sicuranza, Polynomial signal

processing, Wiley, 2000.

[12] J. H. M. Goulart and P. M. S. Burt, “Efficient ker-

nel computation for Volterra filter structure evaluation,”

IEEE Signal Processing Letters, vol. 19, no. 3, pp. 135–

138, March 2012.

[13] G. D. Mitsis, M. G. Markakis, and V. Z. Marmarelis,

“Nonlinear Modeling of the Dynamic Effects of Infused

Insulin on Glucose: Comparison of Compartmental

With Volterra Models,” IEEE Transactions on Biomed-

ical Engineering, vol. 56, no. 10, pp. 2347–2358, Octo-

ber 2009.

[14] H. Koeppl and D. Schwingshackl, “Comparison of

discrete-time approximations for continuous-time non-

linear systems,” in Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Pro-

cessing, 2004 (ICASSP ’04), May 2004, vol. 2, pp. II–

881–II–884.

[15] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain,

“Symmetric tensors and symmetric tensor rank,” SIAM

Journal on Matrix Analysis and Applications, vol. 30,

no. 3, pp. 1254–1279, 2008.

[16] T. G. Kolda and B. W. Bader, “Tensor decompositions

and applications,” SIAM Review, vol. 51, no. 3, pp. 455–

500, 2009.

[17] B. Moore, “Principal component analysis in linear sys-

tems: Controllability, observability, and model reduc-

tion,” IEEE Transactions on Automatic Control, vol. 26,

no. 1, pp. 17–32, February 1981.

[18] P. A. Regalia, Adaptive IIR Filtering in Signal Process-

ing and Control, Marcel Dekker, 1995.

[19] D. Franken, K. Meerkotter, and J. Waßmuth, “Passive

parametric modeling of dynamic loudspeakers,” IEEE

Transactions on Speech and Audio Processing, vol. 9,

no. 8, pp. 885–891, November 2001.

[20] D. Franken, K. Meerkotter, and J. Waßmuth, “Observer-

based feedback linearization of dynamic loudspeakers

with Ac amplifiers,” IEEE Transactions on Speech and

Audio Processing, vol. 13, no. 2, pp. 233–242, March

2005.

5749


