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ABSTRACT

Nonlinear effects limit analog circuit performance, caus-
ing both in-band and out-of-band distortion. The classical
Volterra series provides an accurate model of many nonlin-
ear systems, but the number of parameters grows extremely
quickly as the memory depth and polynomial order are in-
creased. Recently, concepts from compressed sensing have
been applied to nonlinear system modeling in order to address
this issue. This work investigates the theory and practice of
applying compressed sensing techniques to nonlinear system
identification under the constraints of typical radio frequency
(RF) laboratories. The main theoretical result shows that
these techniques are capable of identifying sparse Memory
Polynomials using only single-tone training signals rather
than pseudorandom noise. Empirical results using laboratory
measurements of an RF receiver show that sparse Generalized
Memory Polynomials can also be recovered from two-tone
signals.

Index Terms— Nonlinear system identification, nonlin-
ear equalization, sparse modeling, compressed sensing, com-
pressive sensing

1. INTRODUCTION

Nonlinear characteristics of analog circuits can degrade sys-
tem performance by introducing both in-band and out-of-
band distortion. This distortion can be supressed by nonlin-
ear digital equalization provided that the nonlinearities are
invertible and can be identified. The classical model for a
nonlinear system is the Volterra series [1]:

y[n] =

P∑
p=0

M−1∑
m1,...,mp=0

h
(p)
V S(m1, . . . ,mp)

p∏
l=1

x[n−ml].

Due to the rapid growth in the number of Volterra series co-
efficients with memory depth M and polynomial order P , al-
ternative, “pruned” Volterra approaches have been proposed.
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Two well-known choices include the Memory Polynomial
(MP) [2]:

y[n] =

P∑
p=0

M−1∑
m=0

h
(p)
MP [m]xp[n−m]

and Generalized Memory Polynomial (GMP) [3]:

y[n] =

P∑
p=0

M−1∑
m1=0

M−1∑
m2=0

h
(p)
GMP [m1,m2]×

x[n−m1]x
p−1[n−m1 −m2]. (1)

While these simplifications of the Votlerra series reduce
the number of coefficients considerably, they can still contain
large numbers of parameters. Moreover, estimating coeffi-
ceints h(p) is not always straightforward. The output is linear
in the unknowns, but correlation between different polyno-
mial combinations of the input requires special consideration
(usually involving pseudorandom input signals) to achieve an
invertible linear system [1, 4].

2. RELATION TO PRIOR WORK

The complexity of the standard Volterra series approach to
nonlinear system modeling makes identification and compen-
sation of these systems challenging. Thus, a sparse model-
ing approach is particularly attractive. Recently, ideas from
the fields of sparse signal processing and compressed sens-
ing have been applied to nonlinear system identification [5,
6, 7]. In these works, it is shown that certain sparse nonlin-
ear systems can be identified using “short” random training
sequences. The use of random training sequences permits,
in some cases, the construction of matrices which satisfy a
restricted isometry property (RIP), thus providing theoreti-
cal guarantees to compressed sensing approaches to nonlinear
system identification.

While it is possible to generate excititory pseudorandom
signals in an RF laboratory, it can be difficult to produce
“clean” signals; i.e., signals whose amplitude can be precisely
known, yet random at a given set of time points. On the other
hand, signal generators, passive filters and passive combiners
capable of producing signals consisting of several sinusoids
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with 90+ dB spur-free dynamic range (SFDR) are common-
place. The goal of this work is to show that sparse model
identification can be applied to nonlinear systems using only
sinusoidal input signals.

3. TESTBED LIMITATIONS

The theoretical and practical contributions of this work are
motivated by the realities of RF test laboratories. In particu-
lar, the training signals used to stimulate a nonlinear system
under test must be easily generated in a typical RF labora-
tory using common equipment. The following capabilities of
the assumed testbed capture the key factors motivating the ap-
proach:

1. Clean tones can be generated; i.e. harmonics from the
signal generators have been pushed below the noise
floor via passive filters.

2. Tones can be generated anywhere in the band of inter-
est, which does not include dc.

3. The analog-to-digital converter (ADC) does not intro-
duce any additional nonlinearities into the signal.

4. The “resolution bandwidth” is sufficient to capture all
harmonics of interest (these may be aliased).

The key factor differentiating this work from prior uses of
compressive sensing techniques in nonlinear systems is that
capability 1 is easily achieved in practice whereas generating
clean pseudorandom signals is significantly more challeng-
ing.

4. RECOVERY OF SPARSE MEMORY
POLYNOMIALS

This section presents the main theoretical result of the pa-
per. Namely, that a nonlinear system described by a sparse
Memory Polynomial can be identified by a small number of
single-tone stimuli. Consider first the non-sparse case.

The output of the pth-order kernel of a discrete time Mem-
ory Polynomial with memory depth M is given by [2]:

yp[n] =

M−1∑
m=0

h
(p)
MP [m]xp[n−m]. (2)

Setting the input signal to x[n] = cos
(
2πk
N n+ θ

)
results in

(letting ω = 2πk
N ):

xp[n−m] =
1

2p

(
ej(ω(n−m)+θ) + e−j(ω(n−m)+θ)

)p
=

1

2p

p∑
k=0

(
p

k

)
ej(ω(n−m)+θ)(p−2k)

=
1

2p
(
ejpθe−jpωmejpωn + . . .+ e−jpθejpωme−jpωn

)

From which the Discrete Time Fourier Series coefficient of
Eq. 2 at pω can be found:

Yp[pω] =

M−1∑
m=0

2−pejpθe−jpωmh
(p)
MP [m]. (3)

Collecting measurements over a set of M − 1 test tones at
frequencies ωi = 2π

N ki leads to:

2p


Y [pω0]
Y [pω1]

...
Y [pωM−1]

 =


ejpθ0 0 . . . 0
0 ejpθ1 . . . 0
...

...
. . .

...
0 0 . . . ejpθM−1

× (4)


1 e−jpω0 . . . e−jp(M−1)ω0

1 e−jpω1 . . . e−jp(M−1)ω1

...
...

. . .
...

1 e−jpωM−1 . . . e−jp(M−1)ωM−1




h
(p)
MP [0]

h
(p)
MP [1]

...
h
(p)
MP [M − 1]


The diagonal matrix in Eq. 4 is invertible since each entry
is nonzero. The M × M Vandermonde matrix is invertible
whenever ki 6= kj modulo N

p . This results in the following:

Theorem 1: The coefficients of the pth-order kernel of a
Memory Polynomial of depth M are the solution to an invert-
ible linear system defined by M sinusoidal training signals
via Eq. 3.

This intermediate result suggests that recovery of sparse
Memory Polynomial kernels is possible from a subset of the
measurements needed to recover all M MP coefficients. This
is in fact the case under certain condtions. For a given polyno-
mial order p, selectN = lp for some integer l ≥M . Suppose
only R frequencies are selected uniformly at random accord-
ing to ωr = 2π

N kr =
2π
N (k0 + ir) with ir ∈ {0, 1, . . . , Np }. In

this case the full matrix of Eq. 4 can be written as:

A =


1 e−jp

2π
N k1 . . . e−jp(M−1) 2π

N k1

1 e−jp
2π
N k2 . . . e−jp(M−1) 2π

N k2

...
...

. . .
...

1 e−jp
2π
N kR . . . e−jp(M−1) 2π

N kR



=


1 e−j

2π
N pi1 . . . e−j

2π
N p(M−1)i1

1 e−j
2π
N pi2 . . . e−j

2π
N p(M−1)i2

...
...

. . .
...

1 e−j
2π
N piR . . . e−j

2π
N p(M−1)iR

×

1 0 . . . 0

0 e−jp
2π
N k0 . . . 0

...
...

. . .
...

0 0 . . . e−jp(M−1) 2π
N k0

 (5)

Denote this decomposition A = FN/pD. SinceN is divisible
by p and N

p ≥ M , FN/p is a sub-matrix of an N
p = l point
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DFT matrix consisting of R random rows and the the first
M columns. It is well known in compressive sensing theory
that such matrices are amenable to sparse reconstruction. For
example, applying the main theorem of [8] gives:

Theorem 2: A pth order Memory Polynomial kernel with
K nonzero coefficients can be uniquely recovered with high
probability from O(KpolylogN) sinusoidal test signals by
minimizing

∑
m

∣∣∣h(p)MP [m]
∣∣∣ subject to Eq. 3.

Remark: Alternatively, if N and p are relatively prime (with
N ≥ p), then the M columns of FN/p are unique and it is
again an appropriate sub-matrix of a DFT matrix.

5. SPARSE GENERALIZED MEMORY
POLYNOMIALS

The Generalized Memory Polynomial (GMP) (Eq. 1) pro-
vides a more general and more broadly applicable nonlinear
system model than MP [3]. Empirical results suggest that
sparse GMP models can be identified using two-tone calibra-
tion signals and applied to improve the SFDR of RF receivers
(see Sec. 6). Theoretical conditions establishing when this
is possible (analogous to Thm. 2) are the subject of ongoing
research. In the remainder of this section, a procedure for
estimating sparse GMP systems is described.

Nonlinear effects in RF receivers can be compensated in
the digital domain by (approximately) inverting the nonlinear
system which describes the analog circuit behavior. Rather
than approximating the system of interest with a Volterra se-
ries and subsequently finding its inverse, the (sparse) Volterra
series representing the inverse can be found directly (see
Fig. 1).

Fig. 1. Rather than identify nonlinear system H , equalizer G
can be identified directly.

Consider nonlinear system H described by x[n] =
H(y(t)). The goal of nonlinear equalizer G is to remove
nonlinear distortions from the digitized signal x[n] so that
G(x[n]) = yb[n] = yb(nT ), where T is the sampling in-
terval and yb refers to signal y at baseband. The response
of system H to a two-tone stimulus consists of the original
two-tones (amplified, delayed, and converted to baseband) as
well as intermodulation and harmonic distortions caused by
nonlinear mixing of the two tones (see Fig. 3). Identifying
a sparse GMP-based equalizer amounts to finding a small
subset of terms from Eq. 1 that removes all distortion spurs

while preserving the original two-tone signal of interest.
To this end, the nonlinear system H can be probed with

multi-tone training signals. The desired output yb[n] can be
written as a sum of the distorted output signal x[n] and a linear
combination of its products of the form x[n−m1]x

(p−1)[n−
m1 −m2]:

yb[n] = x[n] +

P∑
p=2

M−1∑
m1=0

M−1∑
m2=0

h
(p)
GMP [m1,m2]×

x[n−m1]x
p−1[n−m1 −m2] (6)

= x[n] + G̃(x[n]).

Since multi-tone training signals are used, the spectrum of
x[n] will consist of spikes at the frequencies of the input tones
as well as spurious components at harmonic and intermodu-
lation frequencies. The frequencies of spurious components
can be easily determined from the tone frequencies and the
nonlinear orders considered (p = 2, 3, . . . , P ). The frequency
components of G̃(x[n]) can be found in a similar fashion, al-
though spurious components not found in x[n] are often neg-
ligably small. Considering only frequencies containing spu-
rious activity allows Eq. 6 to be expressed in the frequency
domain. The resulting equation at frequency ωi is:

Yb(ωi) = X(ωi) +
[
fωi(x

2[n]) fωi(x[n]x[n− 1]) . . .

fωi(x[n−M + 1]xP−1[n− 2M + 2])
]
hGMP

where fωi(u) is the DFT coefficient of u at ωi.
Collecting measurements at all significant spurious fre-

quencies over a number of multi-tone training signals leads to
a linear inverse problem whose solution is a set of GMP co-
efficients describing the desired inverse nonlinear system G.
Sec. 4 showed that a similar linear system (for the Memory
Polynomial case) can admit the correct sparse solution or be
invertible for an appropriate choice of training signals. The
addition of a second delaym2 in the GMP model complicates
this analysis, but empirical results suggest that recovery of
sparse GMP systems is possible.

6. MEASURED RESULTS

The sparse GMP approach described in Sec. 5 was applied to
a low power homodyne RF receiver developed at MIT Lincoln
Laboratory [9, 10]. Two-tone signals with baseband equiva-
lent frequencies between 5 and 45 MHz were created at RF
using Agilent E8257D signal generators, passive combiners,
and a passive bandpass filter to eliminate nonlinear spurs gen-
erated by the signal generators. These signals were injected
into the homodyne receiver whose output was digitized us-
ing an LTC2209 16-bit ADC from Linear Technology. The
ADC was operated below full scale to avoid introducing ad-
ditional nonlinearties into the data. The measured SFDR from
the ADC alone at this input power was greater than 95 dBc.
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(a) Two-tone signal before equalization. (b) Two-tone signal after equalization.

Fig. 3. A sparse GMP equalizer using 30 coefficients improves the SFDR of a two-tone validation signal from 58 to 85 dBc.

Fig. 2. Cumulative distribution function of validation signal
SFDR. Median SFDR improves from 56 dBc with no equal-
ization to 69 dBc using 5 GMP filter taps, 82 dBc using 10 or
20 taps, and 85 dBc using 30 filter taps.

The 752 two-tone signals collected in this manner were
divided into training and validation groups of 526 and 226
test signals, respectively. As described in Sec. 5, the train-
ing signals were used to create a system of linear equations
corresponding to a Volterra series with second-, third-, and
fifth-order kernels. Delays m1 and m2 ranged from −3 to
4 (a negative delay corresponds to an advance). The result-
ing linear system y = XhGMP was approximately solved
for sparse vector hGMP via the orthogonal matching pursuit
(OMP) algorithm [11]. The columns of matrix X were nor-
malized before applying OMP.

The result of applying the sparse GMP equalizer to the
validation data is shown in Fig. 2. The circuit achieves about
56 dBc SFDR without equalization. With only five GMP co-
efficients, the SFDR increases by about 13 dB. Adding more

GMP coefficients improves performance, but most improve-
ment is aleardy achieved with 10 coefficients. With thirty co-
efficients, the SFDR improves by nearly 30 dB to 85 dBc.

Figure 2 illustrates some interesting characteristics of the
sparse GMP equalizer. When 30 coefficients are used, about
77% of the validation data achieved 82 dBc or better, but the
remaining 23% range between 65 and 81 dBc. One possible
explanation for this wide range is that the sparse GMP model
might not be sufficient near band edges. Increasing mem-
ory depth or selecting from a full Volterra series may improve
this, but the sparse approximation problem becomes more dif-
ficult as the number of possible coefficients increases.

The result of applying the sparse GMP equalizer to a sin-
gle two-tone validation signal is shown in Fig. 3. In this ex-
ample SFDR improves from 58 to 85 dBc. Second- and third-
order harmonics as well as third-order intermodulation distor-
tions are significantly reduced by the equalizer.

7. SUMMARY

This work provides theoretical and practical results of apply-
ing compressed sensing techniques to nonlinear system iden-
tification using typical RF laboratory equipment. The main
theoretical result proves that sparse Memory Polynomials can
be recovered by applying a small number of single-tone sig-
nals to the nonlinear system. Expanding this theoretical re-
sult to sparse Generalized Memory Polynomials and sparse
Volterra series is the subject of ongoing research. In the GMP
case, laboratory tests suggest that two-tone signals are suf-
ficient to estimate a nonlinear equalizer which boosts SFDR
from 58 dBc to 85 dBc in an RF receiver.
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