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ABSTRACT

The Generalized Sliding-Window Fast Transversal Filter (GSWFTF)
is an extension of the exponentially weighted fast RLS algorithm,
which inherits its rapid convergence while featuring the desired ro-
bustness of affine projection algorithms. Motivated by the numerical
difficulties typical from such adaptive transversal realizations, we
develop the lattice version of the GSWRLS. Our simulations show
significant improvement on stability compared to the GSWFTF and
the classical, sliding-window RLS lattice recursions. The new order-
recursive filter exhibits the best of both robust and fast converging
algorithms, without showing divergence over millions of iterations.

Index Terms— Adaptive, fast, RLS

1. INTRODUCTION

The Generalized Sliding-Window Recursive Least Squares(GSWRLS)
algorithm was proposed in [1] as a means of improving the tracking
ability of the exponentially weighted RLS (EWRLS) algorithm, and
the numerical impairments pertaining to the traditional (rectangular)
sliding window RLS (SWRLS) recursions. Whereas the SWRLS
completely forgets data beyond a length L of past input samples, the
GSWRLS algorithm makes use of only partial downdate recursions,
thus preserving the exponential window decay towards infinity. The
resulting window exhibits a characteristic “tail” beyond L samples,
which helps regularizing the least-squares (LS) problem, therefore
contributing to better conditioning and stability of sliding-window
adaptive filters (see Fig. 1). Compared to the SWRLS and the Affine
Projection Algorithm (APA) [2], the GSWRLS is able to retain both
desired robustness and fast convergence features within a single
algorithm. Note that the APA solves an underdetermined system of
equations due to a short window length, and yet both SWRLS and
the APA are subject to ill-conditioning and noise enhancement [3].

Now, a fast O(Q) transversal realization of the GSWRLS algo-
rithm was further developed in [3] for tapped-delay-line models of
length Q, along with an error feedback stabilizing mechanism simi-
lar to the one employed in the well known fast transversal filter (FTF)
recursions [4]. Unfortunately, despite of its efficiency, depending on
the choice of the feedback tuning parameters, the GSWFTF can still
suffer from the numerical problems inherent to such nonminimal
transversal realizations [5],[6], which eventually become unstable.

Fast order-recursive implementations of the EWRLS are, on
the other hand, naturally stable, and require no stabilization mecha-
nism [7],[8]. This fact motivates us to pursue the lattice version of
the GSWRLS algorithm, which we refer to as the Generalized Slid-
ing Window RLS Lattice (GSWRLSL) adaptive filter. We develop
new a posteriori error based recursions for the additional lattice that
results from solving the order-recursive, partial downdate problems,

and show how the defining variables of the new arising reflection
coefficients relate to the ones in the updating solution.

We have verified, for Composite Source Signal (CSS) inputs,
that while the GSWFTF and the rectangular SW-lattice algorithms
diverge in a few iterations, the GSWRLSL remains stable even after
a long observation period. The mean-squared-error (MSE) and the
convergence rate of the GSWRLSL are also illustrated in comparison
with the ones of the APA, NLMS, SWRLS, and EWRLS algorithms.
We observed that the GSWRLSL offers excellent tradeoff, with a
mix of fast convergence and quick tracking behavior, given sudden
changes in the impulse response of a random walk channel model.

2. REGULARIZED GSWRLS PROBLEM

Given a column vector yN ∈ CN+1, a (N+1)×M complex data ma-
trix HM,N , and a positive-definite regularization ΠM , we seek the
vector wM ∈ CM that solves the following minimization problem:

min
wM

[
λN+1w∗

MΠ−1
M wM + ‖yN −HM,NwM‖2WN

]
(1)

where we denote by ( )∗, the complex conjugate transposition, and
WN ,WN,L = diag

(
(1− η0)λN , · · · , (1− η0)λL, λL−1, · · ·, 1

)
is a diagonal matrix defined in terms of a forgetting factor λ satisfy-
ing 0 � λ ≤ 1, and a partial downdate factor η0, for 0 < η0 ≤ 1.
Figure 1 depicts the generalized window:

Fig. 1. Generalized Sliding-Window.

The entries of yN are given by {d(i)}, while the rows of HM,N

are defined by the input regressors {uM,i}. We further denote by
{xm,N} the m-th column of HM,N . The solution to (1) is given by
wM,N , which we explicitly specify in terms of its length M at time
N . This will be the case of several LS variables defined in this paper.

Due to the discontinuity in the window shape of Fig. 1, the
GSWRLS algorithm computes wM,N iteratively based on the so-
lution to a partial downdate problem, wd

M,N , which is obtained by
replacing WN in (1) with W d

N ,WN,L−1. In this case, the Kalman
gain and likelihood variables {gdM,N , γ

d
M (N)} corresponding to the

downdating solution are analogously defined as in the update RLS
equations. Table 1 lists the GSWRLS recursions of [1].
Note: Since we shall later exploit the shift structure nature of the in-
put regressors uM,i = [u0(i) u1(i) · · · uM−1(i) ], we will assume
that the regularization matrix ΠM is of the special diagonal form
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Π−1
M , µ · diag(λQ−1, λQ−2, · · · , λQ−M ), for a small positive µ,

and where Q is the order of the model we wish to estimate.

—————————
Initialization

Set: η0 satisfying 0 < η0 ≤ 1 wM,−1 = 0
λ satisfying 0� λ ≤ 1 PM,−1 = ΠM

——————————————————–
ForN ≥ 0, repeat:

γdM (N − 1) = (−η−1
0 λ1−L + uM,N−LPM,N−1u

∗
M,N−L)−1

gdM,N−1 = PM,N−1u
∗
M,N−Lγ

d
M (N−1)

PdM,N−1 = PM,N−1 − gdM,N−1g
d∗
M,N−1γ

−d
M (N−1)

wdM,N−1 = wM,N−1 + gdM,N−1[d(N − L)− uM,N−LwM,N−1]

γM (N) = (1 + λ−1uM,NP
d
M,N−1u

∗
M,N )−1

gM,N = λ−1PdM,N−1u
∗
M,NγM (N)

PM,N = λ−1PdM,N−1 − gM,Ng
∗
M,Nγ

−1
M (N)

wM,N = wdM,N−1 + gM,N [d(N)− uM,NwdM,N−1]—————————
Table 1. Generalized Sliding Window RLS (GSWRLS) algorithm.

3. GSWRLS LATTICE RECURSIONS

Let us define the a posteriori estimation error vectors:

eM,N
∆
= yN −HM,NwM,N , (2)

edM,N
∆
= yN −HM,Nw

d
M,N . (3)

According to our notation, scalars are indicated with parenthesis,
e.g., the last element of eM,N is given by eM,N (N), while the (N −
L)-th entry of edM,N−1 is denoted by edM,N−1(N − L).

Now suppose one more column is appended to HM,N :

HM+1,N =
[
HM,N xM,N

]
. (4)

The joint process estimation order-updates eM,N and edM,N to
eM+1,N and edM+1,N , respectively. This is accomplished by writing
the updates for P−1

M+1,N and P−d
M+1,N using (4), where

P−1
M,N

∆
= λN+1Π−1

M +H∗
M,NWNHM,N , (5)

P−d
M,N

∆
= λN+1Π−1

M +H∗
M,NW

d
NHM,N . (6)

Let the solutions to the update and downdate backward predic-
tion problems be given by wb

M,N , PM,NH
∗
M,NWNxM,N and

wbd
M,N , P d

M,NH
∗
M,NW

d
NxM,N , respectively. It follows that the

minimum costs ζbM (N) and ζbdM (N) from these projections are

ζbM (N)
∆
= µλN+Q−M + x∗M,NWNbM,N (7)

ζbdM (N)
∆
= µλN+Q−M + x∗M,NW

d
Nb

d
M,N , (8)

where the backward prediction error vectors are defined as

bM,N
∆
= xM,N −HM,Nw

b
M,N , (9)

bdM,N
∆
= xM,N −HM,Nw

bd
M,N . (10)

The so-called reflection coefficients for the update and downdate so-
lutions are thus written as

κM (N)
∆
=
b∗M,NWNyN

ζbM (N)

∆
=
ρ∗M (N)

ζbM (N)
, (11)

κd
M (N)

∆
=
bd∗M,NW

d
NyN

ζbdM (N)

∆
=
ρd∗M (N)

ζbdM (N)
. (12)

For convenience, we denote the inner products in (7) and (8) by

ξbM (N)
∆
= x∗M,NWNbM,N , ξbdM (N)

∆
= x∗M,NW

d
Nb

d
M,N . (13)

Applying the matrix inversion lemma to P−1
M+1,N and P−d

M+1,N , and
substituting the results in (2) and (3), respectively, we obtain order-
updates for the a posteriori estimation error vectors:

eM+1,N (N) = eM,N (N)− κM (N)bM,N (N) (14)

edM+1,N−1(N−L) = edM,N−1(N−L)− κd
M (N−1)bdM,N−1(N−L) (15)

3.1. Forward and Backward Order-Updates

In order to update the a posteriori errors, we shall consider the fol-
lowing decompositions:

HM+1,N =
[
x0,N H̄M,N

]
(16)

H̄M+1,N =
[
H̄M,N xM+1,N

]
(17)

We define the LS solutions for the forward update and down-
date problems as wf

M,N , P̄M,NH̄
∗
M,NWNx0,N , and wfd

M,N ,

P̄ d
M,NH̄

∗
M,NW

d
Nx0,N , as well as the ones of the backward predic-

tion problems wb̄
M,N , P̄M,NH̄

∗
M,NWNxM+1,N and wb̄d

M,N ,
P̄ d
M,NH̄

∗
M,NW

d
NxM+1,N , where, similarly to (5) and (6),

P̄−1
M,N

∆
= λNΠ−1

M + H̄∗
M,NWNH̄M,N , (18)

P̄−d
M,N

∆
= λNΠ−1

M + H̄∗
M,NW

d
NH̄M,N . (19)

In order to write the prediction reflection coefficients, we define

fM,N
∆
= x0,N − H̄M,Nw

f
M,N (20)

fd
M,N

∆
= x0,N − H̄M,Nw

fd
M,N (21)

ζfM (N)
∆
= µλN+Q + x∗0,NWNfM,N (22)

ζfdM (N)
∆
= µλN+Q + x∗0,NW

d
Nf

d
M,N (23)

ξfM (N)
∆
= x∗0,NWNfM,N , ξfdM (N)

∆
= x∗0,NW

d
Nf

d
M,N (24)

b̄M,N
∆
= xM+1,N − H̄M,Nw

b̄
M,N (25)

b̄dM,N
∆
= xM+1,N − H̄M,Nw

b̄d
M,N (26)

ζ b̄M (N)
∆
= µλN+Q−M−1 + x∗M+1,NWN b̄M,N (27)

ζ b̄dM (N)
∆
= µλN+Q−M−1 + x∗M+1,NW

d
N b̄

d
M,N (28)

ξb̄M (N)
∆
= x∗M+1,NWN b̄M,N , ξ

b̄d
M (N)

∆
= x∗M+1,NW

d
N b̄

d
M,N (29)

so that: 

κf
M (N)

∆
=
b̄∗M,NWNx0,N

ζ b̄M (N)

∆
=
δ∗M (N)

ζ b̄M (N)
(30)

κfd
M (N)

∆
=
b̄d∗M,NW

d
Nx0,N

ζ b̄dM (N)

∆
=
δd∗M (N)

ζ b̄dM (N)
(31)

κb
M (N)

∆
=
f∗
M,NWNxM+1,N

ζfM (N)
=
δM (N)

ζfM (N)
(32)

κbd
M (N)

∆
=
fd∗
M,NW

d
NxM+1,N

ζfdM (N)
=
δdM (N)

ζfdM (N)
(33)

Now, using (16) and (17) to get the order-updates for PM+1,N ,
P d
M+1,N , P̄M+1,N , P̄ d

M+1,N , and substituting these expressions into
the estimation errors definitions (9), (10), (20), and (21), we obtain

bM+1,N (N) = b̄M,N (N)− κb
M (N)fM,N (N) (34)
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xN HN zN ∆d
N−1 x̃dN−1(N−L) z̃dN−1(N−L) γd(N−1) ∆N x̃N (N) z̃N (N) γ(N)

yN HM,N xM,N ρdM (N−1) edM,N−1(N−L) bdM,N−1(N−L) γdM (N−1) ρM (N) eM,N (N) bM,N (N) γM (N)

xM+1,N H̄M,N x0,N δd∗M (N−1) b̄dM,N−1(N−L) fdM,N−1(N−L) γ̄dM (N−1) δ∗M (N) b̄M,N (N) fM,N (N) γ̄M (N)

xM+1,N H̄M,N xM+1,N ξb̄dM (N−1) b̄dM,N−1(N−L) b̄dM,N−1(N−L) γ̄dM (N−1) ξb̄M (N) b̄M,N (N) b̄M,N (N) γ̄M (N)

x0,N H̄M,N x0,N ξfdM (N−1) fdM,N−1(N−L) fdM,N−1(N−L) γ̄dM (N−1) ξfM (N) fM,N (N) fM,N (N) γ̄M (N)

xM,N HM,N xM,N ξbdM (N−1) bdM,N−1(N−L) bdM,N−1(N−L) γdM (N−1) ξbM (N) bM,N (N) bM,N (N) γM (N)

Table 2. Description of all quantities involved in the computation of {κf
M (N), κfd

M (N), κb
M (N), κbd

M (N), κM (N), κd
M (N)}.

bdM+1,N−1(N−L) = b̄dM,N−1(N−L)− κbd
M (N−1)fd

M,N−1(N−L) (35)

fM+1,N (N) = fM,N (N)− κf
M (N)b̄M,N (N) (36)

fd
M+1,N−1(N−L) = fd

M,N−1(N−L)− κfd
M (N−1)b̄dM,N−1(N−L) (37)

3.2. Reflection Coefficients

The fact that the updating recursions of the GSWRLS algorithm rely
on the downdating variables {P d

M,N−1, w
d
M,N−1} and vice-versa,

suggests that analogous recursions relating the defining quantities
of the reflection coefficients (11), (12) and (30)-(33) must too ex-
ist. In this section, we develop time-updates for the coefficients
{δM (N), δdM (N), ρM (N), ρdM (N), ξbM (N), ξbdM (N), ξfM (N),
ξfdM (N), ξb̄M (N), ξb̄dM (N)} by following the same strategy of [7],
i.e., we refer to a generic result for matrices explicitly written as[

xN HN zN
]
,

[
xN−1 HN−1 zN−1

x(N) hN z(N)

]
(38)

for an arbitrary structure HN , and column vectors xN and zN . Our
goal is to update the inner product ∆N , x∗NWN z̃N as well as to
obtain its partial downdate counterpart ∆d

N , x∗NW
d
N z̃

d
N , consider-

ing z̃N , zN −HNw
z
N , z̃dN , zN −HNw

zd
N , and the definitions:

wz
N

∆
= PNH

∗
NWNzN , wzd

N
∆
= P

d
NH

∗
NW

d
NzN (39)

PN
∆
= (λNΠ

−1
+H

∗
NWNHN )−1 (40)

P
d
N

∆
= (λNΠ

−1
+H

∗
NW

d
NHN )−1 (41)

x̃N
∆
= xN −HNw

x
N , x̃dN

∆
= xN −HNw

xd
N (42)

wx
N

∆
= PNH

∗
NWNxN , wxd

N
∆
= P

d
NH

∗
NW

d
NxN (43)

γ−1(N)
∆
= 1 + λ−1hNP

d
N−1h

∗
N (44)

γ−d(N)
∆
= −λ1−Lη−1

0 + hN−L−1PNh
∗
N−L−1 (45)

where Π is any positive-definite regularization matrix.
By using the LS update and downdates for {wx

N , w
xd
N , wz

N , w
zd
N },

it can be shown that the following key recursions hold:

∆d
N−1 = ∆N−1 +

(
λL−1η0

)2 x̃d∗N−1(N−L)z̃dN−1(N−L)

γd(N−1)
(46)

∆N = λ∆d
N−1 + x̃∗N (N)z̃N (N)/γ(N) (47)

where the likelihood variables for these problems are given by

γ−1
M (N)

∆
= 1 + λ−1uM,NP

d
M,N−1u

∗
M,N (48)

γ−d
M (N − 1)

∆
= −η−1

0 λ1−L + uM,N−LPM,N−1u
∗
M,N−L (49)

γ̄−1
M (N)

∆
= 1 + λ−1ūM,N P̄

d
M,N−1ū

∗
M,N (50)

γ̄−d
M (N − 1)

∆
= −η−1

0 λ1−L + ūM,N−LP̄M,N−1ū
∗
M,N−L (51)

with ūM,N−L and ūM,N given by the (N −L)-th and N -th rows of
H̄M,N , respectively.

Using the general results of (46) and (47), we identify all the
required variables for the reflection coefficients updates listed on Ta-
ble 2.
Remark: It is straightforward to show that similar expressions hold
for the modified costs, with ξ replaced by ζ, as, e.g., in (7) and (8).

Furthermore, it can be easily shown that the likelihood variables
{γM (N), γd

M (N − 1)} are order-updated as

γM+1(N) = γM (N)− |bM,N (N)|2/ζbM (N), (52)

γd
M+1(N−1) = γd

M (N−1)− (λL−1η0)2 |bdM,N−1(N−L)|2

ζbdM (N−1)
. (53)

3.3. Exploiting Data Structure

Given that the data in HM,N possesses a shift structure (i.e., HM,N

is Toeplitz-like), it follows that γ̄M (N) = γM (N − 1), γ̄d
M (N −

1) = γd
M (N−2), b̄M,N (N) = bM,N−1(N−1), b̄dM,N−1(N−L) =

bdM,N−2(N − 1 − L), ζ b̄M (N) = ζbM (N − 1) and ζ b̄dM (N − 1) =

ζbdM (N − 2). With u0(i) , u(i), this allows us to finalize the flow
graph that order-updates all the estimation errors, as shown on Fig. 2.

Fig. 2. Flow graph of the GSWRLSL algorithm.

The complete algorithm listing is shown in Table 3. It requires
16M complex additions, 10M real-complex products, 16M com-
plex products and 16M complex divisions for each iteration. This
represents twice as much as the EWRLSL, and roughly the same
used by the GSWFTF recursions (without a stabilizing mechanism).
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4. SIMULATIONS

Figure 3 illustrates a typical behavior of the SW-Lattice, the
GSWFTF, and the proposed GSWRLSL algorithm (considering
a window of length L for the former), for λ = 0.98, and η0 = 0.7.
The input signal is a Composite Source Signal (CSS), which was fil-
tered through the impulse response of a typical line echo channel of
length 248. The simulations were performed under 53 bits mantissa.
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Stability comparison

 

 
Sliding Window Lattice
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GSWRLS Lattice

Fig. 3. Learning curves considering a CSS input.

We verified that, while the existing algorithms diverge at several
points, the GSWRLSL remains stable for long observation periods.
For this sort of input, we noticed that the choice λ < 0.95 produces
unstable behavior for all algorithms (we also considered an autore-
gressive input with power spectrum function σ2

x/(1 − 0.9z−1) un-
der 23 bits mantissa, for which no divergence was observed over
millions of iterations, for λ ≥ 0.5).

In order to compare the learning curves of algorithms with dif-
ferent windowing mechanisms, we have adjusted the lengthL so that
the fastest convergence is achieved in the GSWRLS, APA, and the
SWRLS filters. We have averaged 105 runs of a random walk model,
and applied the same AR input as above, under a sudden change in
the channel coefficients at N = 300, for Q = 20. Figure 4 illus-
trates the MSE decays for LGSWRLS = LSWRLS = 25, and LAPA = 10.
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Fig. 4. Convergence rate and minimum MSE performance. We used
λGSWRLS = λEWRLS = 0.97 and η0 = 0.98.

Observe that, in this experiment, we assumed that the numer-
ical issues inherent to fast transversal realizations do not arise. In

practice, the fast APA and the SWRLS eventually become unstable,
so we assumed infinite precision calculations in this example. The
GSWRLS shows a mix of fast convergence characteristics, as well
as rapid recovery from sudden changes in the channel coefficients.
A lower MSE performance level closer to the one of the EWRLS can
still be met by properly tuning the GSWRLS window parameters.

—————————–Initialization
Set: ForM ≥ 0 to M = Q− 1, repeat:
η0 satisfying 0 < η0 ≤ 1 γM (−1) = 1

λ satisfying 0� λ ≤ 1 γdM (−2) = −η0λ
L−1

µ small ζbM (−1) = µλQ−M−1

Q the estimated channel order ζbdM (−2) = µλQ−M−2

L the size of the window ζfM (−1) = µλQ−1

δM (−1) = ρM (−1) = 0

bM,−1(−1) = bdM,−2(−L−1) = 0
———————————————————–
ForN ≥ 0, repeat:
γ0(N) = 1

γd0 (N − 1) = −η0λ
L−1

e0,N (N) = d(N)

ed0,N−1(N − L) = d(N − L)
f0,N (N) = b0,N (N) = u(N)

fd0,N−1(N − L) = bd0,N−1(N − L) = u(N − L)

ForM ≥ 0 toM = Q− 1, repeat:
ζbdM (N−1) = ζbM (N−1) + (λL−1η0)2|bdM,N−1(N−L)|2/γdM (N−1)

ζfdM (N−1) = ζfM (N−1) + (λL−1η0)2|fdM,N−1(N−L)|2/γdM (N−2)

δdM (N−1) = δM (N−1) + (λL−1η0)2
fd∗M,N−1(N−L)bdM,N−2(N−L−1)

γd
M

(N−2)

ρdM (N−1) = ρM (N−1) + (λL−1η0)2
ed∗M,N−1(N−L)bdM,N−1(N−L)

γd
M

(N−1)

γdM+1(N−1) = γdM (N−1)− (λL−1η0)2|bdM,N−1(N−L)|2/ζbdM (N−1)

κdM (N − 1) = ρd∗M (N − 1)/ζbdM (N − 1)

κbdM (N − 1) = δdM (N − 1)/ζfdM (N − 1)

κfdM (N − 1) = δd∗M (N − 1)/ζbdM (N − 2)

edM+1,N−1(N−L) = edM,N−1(N−L)− κdM (N−1)bdM,N−1(N−L)

bdM+1,N−1(N−L) = bdM,N−2(N−L−1)− κbdM (N−1)fdM,N−1(N−L)

fdM+1,N−1(N−L) = fdM,N−1(N−L)− κfdM (N−1)bdM,N−2(N−L−1)

ζbM (N) = λζbdM (N − 1) + |bM,N (N)|2/γM (N)

ζfM (N) = λζfdM (N − 1) + |fM,N (N)|2/γM (N − 1)

δM (N) = λδdM (N − 1) + f∗
M,N (N)bM,N−1(N − 1)/γM (N − 1)

ρM (N) = λρdM (N − 1) + e∗M,N (N)bM,N (N)/γM (N)

γM+1(N) = γM (N)− |bM,N (N)|2/ζbM (N)

κM (N) = ρ∗M (N)/ζbM (N)

κbM (N) = δM (N)/ζfM (N)

κfM (N) = δ∗M (N)/ζbM (N − 1)
eM+1,N (N) = eM,N (N)− κM (N)bM,N (N)

bM+1,N (N) = bM,N−1(N − 1)− κbM (N)fM,N (N)

fM+1,N (N) = fM,N (N)− κfM (N)bM,N−1(N − 1)—————————–
Table 3. Generalized Sliding Window RLS Lattice Algorithm.

5. CONCLUSIONS

As expected, compared to the well known EWRLS lattice filter, the
new algorithm requires an additional lattice in order to realize the
partial downdate solution. Just like the covariance and the solutions
of the downdate and update problems are obtained from one another
in the non-fast recursions, the time-updates of the new variables used
in the reflection coefficients of both lattices are analogously obtained
from each other. The GSWRLSL filter is fast converging, robust, and
far more stable then the GSWFTF, without requiring a stabilizing or
rescuing procedure. The main advantage of the proposed filter is its
inherent stability when compared to fast transversal realizations. Our
next step is to obtain the lattice version of the GSWRLS algorithm
for recurrence related input models (not a tapped-delay-line), as a
counterpart of [9]. Fast array and normalized lattice variants of the
GSWRLSL algorithm will be pursued in a forthcoming publication.
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