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ABSTRACT

In this paper, the problem of state tracking with controlled observa-
tions is considered for a system modeled by a discrete-time, finite-
state Markov chain. The system state is ‘hidden’ and observed via
conditionally Gaussian measurements that are shaped by the under-
lying state and an exogenous control input. Following an innovations
approach, a Kalman-like filter is derived to estimate the Markov
chain system state. To optimize the control strategy, the associated
mean-squared error is used as an optimization criterion for a partially
observable Markov Decision Process (POMDP). The optimal solu-
tion is determined via stochastic dynamic programming. Numerical
results are presented for the application of physical activity detection
in heterogeneous, wireless body area networks.

Index Terms— Markov models, approximate MMSE, POMDP,
stochastic dynamic programming, innovations approach

1. INTRODUCTION

In a plethora of applications, a key task is to accurately infer and / or
track an underlying phenomenon of interest by adaptively exploiting
different sensing capabilities, e.g. sensor type, location or number of
samples, of the underlying sensing system. To maximize the infor-
mation content at each time step, the following resource allocation
problem must be solved: which sensing mode should be employed at
each step to provide the next observation? Relevant applications in-
clude sensor scheduling for object tracking and classification [1, 2],
adaptive estimation of sparse signals [3], health care [4] and local-
ization in robotics [5].

In this work, the problem of system state inference with obser-
vation control is considered for a system modeled by a discrete-
time, finite-state Markov chain. The ‘hidden’ system state is ob-
served through a conditionally Gaussian measurement vector that
depends on the underlying system state and an exogenous control
input, which shapes the observations’ quality. To accurately track
the time-evolving system state, we address the joint problem of de-
termining recursive formulae for a Minimum Mean-Squared Error
(MMSE) state estimate and designing a control strategy.

Our motivation stems from the problem of physical activity de-
tection in Wireless Body Area Networks (WBANs) [4]. WBANs
constitute a novel class of sensor networks comprising of heteroge-
neous, biometric sensors, e.g. accelerometer (ACC), electrocardio-
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graph (ECG), and a fusion center, usually a personal device. An
individual wearing the WBAN switches between a set of physical
activities, e.g. Stand, Walk, and as a result, the sensors generate
and communicate biometric signals to the fusion center. Sensor het-
erogeneity implies that certain sensors can better discriminate be-
tween specific activities [4]; and to accurately infer the underlying
time-evolving activity of the individual, we need to jointly design
a state estimator and a sensor selection strategy deciding to which
sensors to communicate and how many samples to request.

The current work extends our prior work [4], which assumed dis-
crete observations, performed Maximum Likelihood detection of the
system state and as an optimization metric, employed a worst-case
error probability bound. In fact, the framework proposed herein is
much more general.

The classical Kalman filter (KF) [6] is suitable for estimating
Gauss-Markov processes in discrete-time, linear systems, while its
extensions, i.e. the Extended KF (EKF) [6] and the Unscented KF
(UKF) [6] are suitable for general, nonlinear, (non)-Gaussian sys-
tems, where they assume a Gaussian approximation for the state dis-
tribution and their performance depends significantly on either some
kind of linearization or the careful selection of a set of sample points.
The proposed Sign-of-Innovation KF (SOI-KF) [7] and its exten-
sions (see [5] and references therein) are based on quantized versions
of the measurement innovation and / or real measurements for lin-
ear Gaussian process and measurement models as well as nonlinear
systems. The work in [8] proposes an approximate MMSE estimator
starting from a maximum à posteriori (MAP) detector in the case
of discrete memoryless channels. The Kalman-like Markov chain
filters designed in [9, 10] assume discrete-time, finite-state observa-
tions but exercise no control. In contrast to these prior works and
building on the innovations approach followed by [9, 10], we pro-
pose an approximate MMSE state estimator for the case of discrete-
time, finite-state Markov chains observed via controlled condition-
ally Gaussian measurements.

Our work allows fusion of multiple samples from heterogeneous
sensors and thus, generalizes prior frameworks that assume one ob-
servation from a single sensor [11–13] or θ samples from θ sen-
sors [1, 2, 14]. Furthermore, our filter’s MSE performance is inter-
twined with the control policy design since the trace of the condi-
tional filtering error covariance matrix constitutes the cost functional
of a partially observable Markov Decision Process (POMDP) [15],
allowing us to focus on the estimation error explicitly. In contrast,
prior work assumes a general convex distance measure for the track-
ing cost [1, 2, 11, 12], some performance bounds [4, 14, 16] or some
information-theoretic measures [13]. The resulting POMDP proves

5715978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



to be non-standard due to non-linear dependence on the predicted be-
lief state in contrast to [1, 2]. Still, the optimal policy can be derived
via stochastic dynamic programming versus [14], where a subopti-
mal scheme is proposed. Our framework also encompasses a large
class of problems that fall under the category of sequential multiple
hypothesis testing, e.g. [3,13,16], and in fact, it is more general since
we allow the underlying hypothesis to change with time. Last but
not least, the performance of the proposed framework is validated
via real data collected from an implemented WBAN [4].

2. PROBLEM FORMULATION

2.1. System Model

We consider a special class of dynamical systems known as Partially
Observable Markov Decision Processes (POMDPs) [15], where time
is divided in discrete time slots denoted by k ∈ {0, 1, . . . }. We
define as system state xk the activity of the individual at time k.
We model the system state as a finite state, first-order Markov chain
with n states i.e. X = {e1, . . . , en}, where ei is the unit vector
with 1 in the i-th position and zero everywhere else. The Markov
chain is characterized by a state transition probability matrix P with
probabilities Pj|i = P (xk+1 = ej |xk = ei), ei, ej ∈ X that do
not change with time, i.e. the chain is stationary.

At each time step, the WBAN sensors generate a set of biometric
signals; feature extraction and selection techniques [17, 18] are em-
ployed to produce a set of samples that correspond to extracted fea-
tures’ values, e.g. ACC mean, ECG period. The fusion center deter-
mines the number of samples to receive from each sensor by select-
ing the appropriate control input uk = [N

uk
1 , . . . , N

uk
K ]T , where

N
uk
l denotes the number of samples to receive from sensor l and K

the total number of sensors in the WBAN. We assume that each con-
trol input uk satisfies the constraint

∑K
l=1N

uk
l 6 N , where N is

fixed, and thus, uk ∈ U = {u1. . . . ,u
∑N

i=1 (i+K−1
i )}. At time step

k, the fusion center receives a measurement vector yk comprising
of the selected samples indicated by control input uk−1. Each such
measurement vector conditioned on the state and control input fol-
lows an AR(1)–correlated multivariate Gaussian model of the form

yk
∣∣ei,uk−1 ∼ f(yk|ei,uk−1) = N (m

uk−1

i ,Q
uk−1

i ), ∀ei ∈ X ,
(1)

where m
uk−1

i = [µ
uk−1

i,S1
, . . . , µ

uk−1

i,SK
]T denotes the mean vec-

tor and Q
uk−1

i = diag(Q
uk−1

i (S1), . . . ,Q
uk−1

i (SK)) the covari-
ance matrix of the Gaussian model for state ei and control input
uk−1. For a particular sensor Sl, the mean vector µuk−1

i,Sl
is of size

N
uk−1

l × 1 and the covariance matrix is defined as Q
uk−1

i (Sl) =
σ2
Sl,i

1−φ2 T + σ2
zI, where T is a Toeplitz matrix with first row/column

[1, φ, φ2, . . . , φN
uk−1
l

−1], I is theNuk−1

l ×Nuk−1

l identity matrix,
φ is the parameter of the AR(1) model and σ2

z accounts for sensing
and communication noise. This model has been validated with real
data in [18].

2.2. Innovations Representation

We introduce the source sequence of true states Xk =
{x0, . . . ,xk}, the control sequence Uk = {u0, . . . ,uk} and
the observations sequence Y k = {y0, . . . ,yk}. We also de-
fine the global history Bk = σ{Xk, Y k, Uk}, the history B−k =
σ{Xk, Y k−1, Uk−1} and the observation-control history Fk =

σ{Y k, Uk−1}, where σ{z} denotes the σ-algebra generated by z.
The total information available to the fusion center at time k is Fk
and the control input at time k is a function of Fk i.e. uk = ηk(Fk).

The innovations sequence {wk} related to {xk} with respect to
Bk [19] is defined as

wk+1
.
= xk+1 − E{xk+1|Bk} = xk+1 −Pxk, (2)

where the last equality is due to the Markov property. Similarly,
the innovations sequence {vk} for the process {yk} with respect to
B−k [19] is defined as

vk
.
= yk − E{yk|B−k } = yk −M(uk−1)xk, (3)

where M(uk−1) = [m
uk−1
1 , . . . ,m

uk−1
n ] and we have exploited

the signal model in (1). Thus, the Doob–Meyer decompositions [20]
of {xk} and {yk} with respect to Bk and B−k , respectively, are

xk+1 = Pxk + wk+1, k > 0, (4)

yk =M(uk−1)xk + vk, k > 1, (5)

where {wk} is a {B}–Martingale Difference (MD) sequence and
{vk} is a {B−}–MD sequence [19].

3. SYSTEM STATE ESTIMATOR

In this section, we develop a Kalman-like filter for estimating the
discrete-time, finite-state Markov chain system state from past obser-
vations and control inputs based on the theory introduced in [9, 19].
We begin by defining the probability distribution of xk conditioned
on Fk, known as the belief state [15], as

pk|k
.
=
[
p1k|k, . . . , p

n
k|k
]T
, (6)

where pik|k = P (xk = ei|Fk),∀ei ∈ X . The expected value of xk
conditioned on Fk coincides with the belief state since

xk|k
.
= E{xk|Fk} =

n∑
i=1

eiP (xk = ei|Fk) = pk|k, (7)

Both notations will be used interchangeably in the sequel.
At this point, we define the estimate innovations sequence {µk}

and the observation innovations sequence {λk} as follows [9, 10]

µk
.
= xk|k − xk|k−1 = E{xk|Fk} − E{xk|Fk−1}, (8)

λk
.
= yk − yk|k−1 = yk − E{yk|Fk−1}, (9)

where xk|k−1,yk|k−1 are the predicted state and measurement es-
timates, respectively. We can easily prove that both sequences
are {F}–MD sequences [19]. The MD representation theorem
[9, 19] constitutes a powerful tool for developing recursive nonlin-
ear MMSE Kalman-like estimators. This theorem states that the se-
quences {µk} and {λk} can be related via µk = Gkλk assuming
we can determine an {F}–predictable sequence {Gk}. In such a
case, Gk is given by

Gk = E{µkλTk |Fk−1}
[
E{λkλTk |Fk−1}

]−1
. (10)

Inspired by [21] and since a recursive solution is desired in our case,
we impose recursivity as a design constraint and use (10) as an ap-
proximation. This approximation along with the Doob–Meyer de-
compositions (4)–(5) and the definitions in (8)–(9) allow us to deter-
mine a suboptimal Kalman-like nonlinear MMSE filtered estimator
for the Markov chain system state. Note that for the set of recursive
estimators with a Kalman-like structure, the proposed estimator is an
optimal MMSE estimator.
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Theorem 1 The Markov chain system estimate at time step k is re-
cursively defined as

xk|k = xk|k−1 + Gk[yk − yk|k−1], k > 0 (11)

with

xk|k−1 = Pxk−1|k−1, (12)

yk|k−1 =M(uk−1)xk|k−1, (13)

Gk = Σk|k−1MT (uk−1)×

(M(uk−1)Σk|k−1MT (uk−1) + Jk)−1, (14)

where x0|−1 = π, and π is the initial distribution over the system
states, Σk|k−1 is the conditional covariance matrix of the prediction
error and Jk =

∑n
i=1 x

i
k|k−1Q

uk−1

i .

At this point, we underscore that even though the proposed filter is
formally similar to the classical KF, it is not a standard KF and the
gain Gk is not a standard Kalman gain; in fact, it depends on the ob-
servations. The conditional filtering and prediction error covariance
matrices have the following form

Σk|k
.
= E{(xk − xk|k)(xk − xk|k)T |Fk}, (15)

Σk|k−1
.
= E{(xk − xk|k−1)(xk − xk|k−1)T |Fk−1}. (16)

Since no constraint is imposed on the individual components of xk|k,
there is no guarantee that they lie on the [0, 1] interval. To overcome
this issue without incorporating additional constraints that may chal-
lenge the determination of a solution to our problem, we adopt the
approach of [10], i.e. apply a suitable memoryless (linear or non-
linear) transformation of xk|k to ensure feasible solutions are deter-
mined.

4. OPTIMAL CONTROL POLICY DESIGN

Our goal is to determine an admissible control policy γ =
{η0, η1, . . . , ηL−1} [15] that minimizes the MSE

Jγ = E
y0,y1,...,yL

{ L∑
k=1

tr
(
Σk|k(yk,uk−1)

)}
, (17)

where L represents the horizon length, tr(·) denotes the trace oper-
ator and the dependence of Σk|k on yk and uk−1 has been stated
explicitly. Thus, we have the following finite horizon, partially ob-
servable stochastic control problem: minu0,u1,...,uL−1 Jγ ; and the
optimal solution may be obtained via dynamic programming (DP)
[15]. However, in contrast to the standard problems of this type, e.g.
see [15,22], our cost function is defined with respect to the observa-
tions sequence and not the state sequence. To determine the optimal
policy, we adapt methods from [15, 22] to our case.

The information Fk for decision making at each time step k is
of expanding dimension [15], hence we can show that a sufficient
statistic for control purposes, which is bounded in memory, is the
conditional probability distribution pk+1|k of the next state xk+1

given the observation-control history Fk and designate this as the
predicted belief state. The predicted belief state can be updated re-
cursively based on the new measurement vector and the current con-
trol input as shown in Lemma 2.

Lemma 2 Let pk|k−1 denote the predicted belief state at time k−1.
Assume that the control input uk−1 is selected and at time step k, the
measurement vector yk is generated. Then, the predicted belief state
pk+1|k is given by the following recursion

pk+1|k =
Pr(yk,uk−1)pk|k−1

1Tnr(yk,uk−1)pk|k−1

, (18)

where 1n is a column vector consisting of n ones and r(yk,uk−1) =
diag (f(yk|e1,uk−1), . . . , f(yk|en,uk−1)) denotes the n× n di-
agonal matrix of measurement vector probability density functions.

Theorem 3 gives the finite-horizon DP equations in terms of the
predicted belief state.

Theorem 3 For k = L − 1, . . . , 1 the cost-to-go function
Jk(pk|k−1) is related to Jk+1(pk+1|k) through the recursion

Jk(pk|k−1) = min
uk−1∈U

[
pTk|k−1h(pk|k−1,uk−1)+∫

1Tnr(y,uk−1)pk|k−1Jk+1

(
Pr(y,uk−1)pk|k−1

1Tnr(y,uk−1)pk|k−1

)
dy

]
,

(19)

where h(pk|k−1,uk−1) is a column vector with compo-
nents h(e1,pk|k−1,uk−1), . . . , h(en,pk|k−1,uk−1) with
h(ei,pk|k−1,uk−1) = 1 − tr

(
GT
kGkQ

uk−1

i

)
− ‖pk|k−1 +

Gk(m
uk−1

i − yk|k−1)‖2. The cost-to-go function for k = L is
given by

JL(pL|L−1) = min
uL−1∈U

[
pTL|L−1h(pL|L−1,uL−1)

]
. (20)

The DP equations stated in Theorem 3 result in high computa-
tional complexity to determine the optimal solution. Specifically,
as with traditional POMDPs, the predicted belief state pk|k−1 is
uncountably infinite [15]. Furthermore, the control input defini-
tion suggests that the control space size can be exponentially large,
while determining the expected future cost is challenging since it re-
quires, in the worst-case, an N–dimensional integration. Last but
not least, in contrast to standard POMDP problems [15], the term
pTk|k−1h(pk|k−1,uk−1) is not a linear function of the predicted be-
lief state pk|k−1 and thus, existing techniques such as [23] and [24]
cannot be directly employed. Still, for small problem sizes, an ap-
proximate solution via numerical computation is feasible.

5. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the per-
formance of the proposed framework. We use real data collected
through an implemented WBAN, the KNOWME network [18]. For
clarity of exposition, we focus on the three-sensor case, two ACCs
and one ECG, with four physical activity states (Sit, Stand, Run,
Walk), and underscore that our methods are directly applicable to
multiple sensors and physical states. The features used are: 1) the
ACC mean from the first ACC, 2) the ACC variance from the second
ACC and 3) the ECG period from the ECG. The state distributions
for the three sensors for a single individual is shown in Fig. 1. The
Markov chain transition probabilities are described by the matrix

P =


0.6 0 0.2 0.4
0.1 0.4 0.1 0
0 0.1 0.3 0.3

0.3 0.3 0.6 0.3

 .
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The numerical results presented herein were performed for N = 2
samples. Even though the number of samples are few, patterns still
emerge.
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Fig. 1. Gaussian distributions associated with each of the four activ-
ity states for the ACC mean, ACC variance and ECG period features,
respectively. The plots indicate that a combination of samples from
the ACC mean and the ACC variance can help us discriminate be-
tween the physical activities of interest. On the other hand, the ECG
Period is not very informative.

In Fig. 2, we present the tracking performance of the proposed
system by showing the true and estimated state sequences. The out-
put of our system is an estimate of the belief state and we detect the
activity state via a MAP rule. We observe that the proposed frame-
work tracks significantly well the underlying, time-evolving activity
state even though the total number of samples used are few. Fur-
thermore, we note that the Stand state is usually not detected since
according to the stationary distribution of the Markov chain, it corre-
sponds to an ephemeral state. Modifications of the tracking cost sim-
ilar to the ones presented in [4] can be employed to detect ephemeral
states.
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Fig. 2. Tracking performance of the proposed framework: the up-
per plot shows the individual’s true activity while the lower plot the
estimated activity.

At this point, we wish to comment on the form of the optimal
control policy. The optimal control policy consists of three types of

control inputs: 1) 2 ACC mean samples, 2) 1 ACC mean sample
and 1 ACC variance sample, and 3) 2 ACC mean samples. The
first type of control input is selected for most of the predicted belief
states and this is due to the fact that it can discriminate between the
more likely states, i.e. Sit, Run, Walk. The second and third types
of control input are primarily selected for detecting the least likely
state, Stand. Specifically, when the Sit state has low probability (6
0.5), the second control input is selected since one sample from each
of the informative sensors can help us discriminate Stand from the
rest of the states. However, when the Run and Walk states have zero
probability, samples from the ACC mean are enough to detect Stand,
as verified by Fig. 1.

Table 1. Detection accuracy for different control policies (A: 1 ACC
mean sample, B: 1 ACC variance sample, Γ: 1 ECG Period sample,
Optimal: determined by DP.)

Control
policy A B Γ Optimal

Detection
accuracy 74% 77% 40% 87%

Table 1 summarizes the detection accuracy achieved by employ-
ing different control policies. Control strategies A, B and Γ always
request 1 sample from the associated sensor irrespective of the pre-
dicted belief state. We find that this approach leads to inferior de-
tection performance compared to the optimal control policy, which
considers the predicted belief state. Furthermore, adaptively fusing
samples from sensors of different capabilities, as done by the op-
timal control policy, can boost detection performance significantly.
The observed performance improvement is a direct outcome of the
optimized control input selection process since the current control
input determines which measurements are selected that in turn (via
the predicted belief state) determine the next control. Finally, we
expect that larger values of the total number N of available samples
will give rise to higher detection accuracy.

6. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the problem of joint MMSE state estima-
tion and control policy design for a discrete-time, finite-state Markov
chain observed via controlled Gaussian measurements. Specifically,
we derived a suboptimal Kalman-like nonlinear MMSE estimator for
the Markov chain system state exploiting an innovations approach.
We also derived a stochastic dynamic programming algorithm to de-
termine the optimal control policy with the cost functional being the
filters’ MSE performance. We validated the performance of the pro-
posed framework via numerical simulations on a WBAN application
using real data.

At this early stage, approximate optimal control policies were
determined by numerically solving the DP equation. Future work
will focus on designing efficient algorithms for calculating control
policies as well as incorporating sensing usage costs into the pro-
posed framework and applications to other problems admitting the
proposed framework.
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