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ABSTRACT

In this work, we study the links between the recovery proper-
ties of sparse signals for Orthogonal Matching Pursuit (OMP)
and the whole General MP class over nested supports. We
show that the optimality of those algorithms is not locally
nested: there is a dictionary and supports I and J with J
included in I such that OMP will recover all signals of sup-
port I, but not all signals of support .J. We also show that the
optimality of OMP is globally nested: if OMP can recover
all s-sparse signals, then it can recover all s'-sparse signals
with ¢’ smaller than s. We also provide a tighter version of
Donoho and Elad’s spark theorem, which allows us to com-
plete Tropp’s proof that sparse representation algorithms can
only be optimal for all s-sparse signals if s is strictly lower
than half the spark of the dictionary.

Index Terms— Sparsity, Compressed sensing, Basis Pur-
suit, Orthogonal Matching Pursuit, Performance analysis and
bounds

1. INTRODUCTION

In the method of sparse representations, one tries to represent
a signal as a linear combination of only a few vectors called
atoms selected from a set called a dictionary [1]. That re-
quires the dictionary to be well adapted to the signal to repre-
sent. When the signal is too complex to be represented on any
orthonormal basis, one has to use an overcomplete dictionary
that contains more atoms than the dimension of the signal.
Representations are then not unique anymore, and finding the
sparsest one becomes an NP-hard problem [2]. One way to
solve the problem efficiently is to use greedy algorithms such
as Orthogonal Matching Pursuit (OMP) [3]. Those algorithms
are generally suboptimal, however a property called the Exact
Recovery Condition (ERC) characterizes the sparse supports
that are guaranteed to be successfully identified by OMP for
a given dictionary [4].
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This paper addresses the link between the recovery prop-
erties of nested supports: if one support satisfies the ERC, do
its sub-supports also satisfy it? If all supports of a given size
satisfy the ERC, do all smaller supports also satisfy it? Our
main result is that if OMP can recover all s;-sparse signals,
then it can recover all so-sparse signals for any so < s1, de-
spite earlier hints of the opposite (Theorem 10 in [5]).

We first review the state of the art, then prove ancillary
results on the link between the size of the support and the
spark of the dictionary, and finally prove the main results.

2. STATE OF THE ART

Consider an overcomplete dictionary ® = (¢,,)1<n<n of N
atoms ¢, € CM with N > M. We will only work with
normalized dictionaries: Vn € [1,N], |¢, |, = 1. We will
also assume that the dictionary has rank M. For a given signal
y € CM, the exact-sparse problem [4] is the one of finding
the coefficients x defined as

~A A .
X = argmin
x€CN |y=®x

1l (PO)

where ||x||, is the number of nonzero coefficients in x: if
I' C [1, N] is the support of x, then ||x||, £ card(T'). The
problem (P0) was proven to be NP-hard [2] but several prac-
tical algorithms have been proposed [6]. In this work we will
focus on the General MP class as it is described by Gribonval

and Vandergheynst [7].

2.1. Greedy algorithms: the General MP class

A greedy algorithm solves the problem (P0) by growing the
support I'; of the solution at each iteration ¢, and removing the
selected atoms from the signal to form a temporary residual
that the algorithm decomposes in the next iterations. Initially,
the support I'g is empty and the residual ry is the signal y
itself. General MP is a class of greedy algorithms that share
two characteristics. First, for an algorithm from the General
MP class, only one atom of index n; is added at iteration ¢ and
it is the atom with the highest correlation with the residual:

I; 2T Uargmax |[(r;_1,¢,)| - QY
nE[l,N]
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The second requirement for a General MP algorithm is that
the %" approximation of the signal is in the span of the sub-
dictionary @1, containing atoms indexed by I'; only:

y —r; € span(®r,) . 2)

Several stopping criteria can be used, but in all cases the algo-
rithm must stop if the residual becomes 0. The different Ge-
neral MP algorithms such as Matching Pursuit (MP) [8], Gra-
dient Pursuit (GP) [9], OMP [3], their local variants LocGP
and LocOMP [10], only differ in how they compute the new
residual. For OMP, the update of the residual is performed by
projecting the signal orthogonally to all previously selected
atoms:

r;2y—®ly 3)

where <I’lt is the pseudoinverse of the subdictionary ®r,.
Within the General MP class, OMP has the unique property
that the residual is always orthogonal to all previously se-
lected atoms. As a consequence, OMP can never select the
same atom twice.

2.2. Exact recovery conditions

The ERC was first derived by Tropp for OMP [4]. In that
case it guarantees that OMP will find the best support and
how many iterations it will take.

Theorem 1 (Exact Recovery Condition for OMP [4]). For
any normalized dictionary ® and support T, if

) <1 (ERC)

t
max || P
n¢l H r$n
then for any sparse signal of sparsest support I, OMP will
recover T in card(T") iterations.

See [11] for the case where the dictionary is not normal-
ized. Gribonval and Vandergheynst later pointed that the ERC
also entails a weaker stability result for the whole General MP
class.

Theorem 2 (Exact Recovery Condition for General MP [7]).
For any normalized dictionary ® and support T, if the ERC
holds, then for any sparse signal with a support included in T,
the support recovered by any General MP algorithm is also
included in T'.

Theorem 1 can be derived from Theorem 2 and the OMP
property to never select the same atom twice (it is done in
Tropp’s proof of Theorem 1 [4]).

Theorem 3 (ERC converse [4]). For any dictionary ® and
support U such that ®r has full rank, if the ERC does not
hold, then there exists a signal y € span(®r) such that the
first atom selected by any General MP algorithm does not
belong to T.

The full rank hypothesis is implicit in Tropp’s work be-
cause he only considers supports that are the sparsest ones for
some signal, and those supports must have full rank. Interest-
ingly, that hypothesis is not needed for the proof of Theorem
2, but to our knowledge, the proof of Theorem 3 requires the

1
@% to

factorization of the pseudoinverse ol = ('I%(I’F)
hold.

3. UNIVERSAL RECOVERY AND SPARK

We now consider conditions for all sparse signals of a given
support size to be recovered by OMP. If a support satisfies the
ERC, then all sparse signals with that support are recovered
by OMP. If all supports of size s satisfy the ERC, then all
s-sparse signals are recovered by OMP, which implies that a
signal can only have at most one s-sparse representation [4].

Besides Donoho and Elad introduced the notion of spark.
spark(®) is the support size of the sparsest vector in the null
space of ®. Donoho and Elad showed that for s such that
2s > spark(®), there is a signal that has two s; and sq-sparse
representations with s; < s and so < s [12].

Tropp suggested that those two uniqueness results could
be combined to conclude on how large s can be to allow uni-
versal recovery by OMP and proposed a proof sketch, but did
not formalize it [4]. That might be because those two results
do not work well together as they are presented: assuming
that all supports of size s satisfy the ERC does not imply that
the supports of size s; and s, also do. ' We now formulate a
stronger version of the spark theorem that will let us conclude
the proof of the upper bound.

Theorem 4 (Spark and uniqueness of sparse representations).
For any s such that

k(®
k) < <m 4
there is a signal with two s-sparse representations on two dif-
ferent full-rank supports.

Proof. We first prove the case where s < spark(®). By def-
inition of the spark, there is a coefficient vector x such that
|x||, = spark(®) and ®x = 0. Let I' £ supp(x). Let
I'y,I'y C T' be any exact covering of I' (i.,e. I'1 UT'y = TY)
with card(T';) = card(I'y) = s. Since s < card(T"), 'y and
I'> must be different to cover I'. We can now define the two
vectors x; and x5 by their individual coefficients [x1],, and

"We will see later in Theorem 8 that this implication actually holds, but
the proof of it will require the upper bound on s that we are currently trying
to prove, therefore it cannot be used yet.
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[Xl]ml
(X, m € I'1\I'y
X1]m =< [X]m/2, meT NIy 5)
0, else
—[X]m, m e Fg\rl
(xolm £ § =X|m/2, meTiNT, (6)
0, else.
We have
X] —Xg =X 7
P(x1 —x2) =0 ®)
@Xl = (I)XQ. (9)

Then y £ Px; has two sparse representations x; and X2 on
two different supports I'y and I's. Moreover the supports I'y
and Ty are smaller than spark(®), so both @1, and ®r, have
full rank.

If spark(®) < s < M, then one can start with the same
proof but the obtained supports are too small and need to be
completed to reach the size s. Let I'; and I'; be two sets of
size spark(®)-1 that exactly cover I'. Let m4 and mq be the
only indices respectively in I';\I'; and T';\I';. Then ¢,
is in the span of ®r, and ¢,,, is in the span of ®r,. So
®r,, &1, and P all span the same subspace of dimension
spark(®)-1 and ®\{,,, } has the same rank M as ®. So for
any s < rank(®), which we assumed to be M, one can find
a completion support J C [1, N]\T of size s — spark(®) + 1
such that I'y U J has full rank s. Then I'y U J also has full
rank s. Let x; and x2 be defined as in Equations (5) and (6)
and let y £ ®x; = ®x,. Let X’ be a vector of support J
andlety’ =y + ®x' = ®(x1 + x') = ®(x2 + x'). y’ has
two different s-sparse decompositions with different full-rank
supports I'y U J and 'y U J. O

We can now complete Tropp’s proof of how large s can
be until signals that cannot be recovered appear.

Theorem 5 (Spark and the ERC). If the ERC holds for all
supports of a size s < M, then s < spark(®)/2, and hence,
every s-sparse representation is unique and the sparsest pos-
sible.

Proof. We prove this by contradiction. If s > spark(®)/2,
then Theorem 4 applies and there is a signal y with two differ-
ent s-sparse decompositions with different full-rank supports
I and J. Since I has size s it satisfies the ERC so OMP run
on y will only ever select atoms that belong to I. Moreover,
since I has full rank, the s-sparse decomposition of y on ®;
is the only one with support included in I so OMP cannot
stop before running all s iterations. So all the atoms of I are
selected by OMP, including those that do not belong to J .
But J has size s so it also satisfies the ERC hence we have a
contradiction. O

4. NESTEDNESS OF RECOVERY ALGORITHMS

Theorem 10 of [5] states such that the ERC holds for all sup-
ports of some size s but fails for some support of size s’ < s.
That would indicate that there are dictionaries such that OMP
can recover all s-sparse signals and not sparser ones. How-
ever, the proof uses a dictionary with non-normalized atoms.
In that case, the ERC as defined in Equation (ERC) is not
linked to the recovery properties of OMP [11]. So although
mathematically correct, that theorem does not help under-
standing the behavior of algorithms. That is why we want
to investigate the question.

There are three properties we want to consider: the ERC,
the optimality of OMP and the stability of General MP. OMP
is optimal for a support I' and a dictionary @ if it can recover
any sparse signal on ® with the support I'. A General MP
algorithm is stable for a support I' if for any signal with the
support I', the algorithm only select atoms that belong to ®r-.
We cannot talk about optimality for General MP because that
class contains some notoriously bad residual updates such as
doing nothing or adding the last atom instead of subtracting
it [10], so one cannot guarantee that a General MP algorithm
will recover the whole support.

4.1. Notions of nestedness

We first need to define two different notions of nestedness.

Definition 4.1 (Local Nestedness). For any K < N, let Ex
be the set of all subsets of [1, N| of cardinality K or less. A
property P(T') that applies to a support T is locally nested up
to size K if

VI' € Eg, [P(T) = (VI Cc T, P(I'"))] (10)
Definition 4.2 (Global Nestedness). Forany K < N, let Fg
be the set of all subsets of [1, N| of cardinality K only. A

property P(I") that applies to a support T is globally nested
up to size K if

VK’ < K, KVF € Fg, P(F)) = (VF/ € Ex, P(F/))}
1)

A property is locally nested if when it is true for a set, it is
true for all subsets. A property is globally nested if when it is
true for all sets of a certain size, it is true for all smaller sets.
Global nestedness is a weaker meta-property than local nest-
edness because its hypotheses are more restrictive. While lo-
cal nestedness implies global nestedness, the opposite is false
in general. The restriction to size K is there because the spars-
est support is always smaller than the rank of the dictionary,
so only those sets should be considered. In particular, for any
dictionary, the full support [1, N] is trivially stable for Gene-
ral MP, but that does not say anything about its subsets.
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4.2. Results for OMP, General MP and the ERC

We now characterize the nestedness of the different consid-
ered properties.

Theorem 6 (Non local nestedness). There are dictionaries
such that the optimality of OMP is not locally nested at size
3. Equivalently, there are dictionaries such that the ERC or
the stability of General MP are not locally nested.

Proof. We just need an example of a dictionary and two sup-
ports IV C T such that I satisfies the ERC and I does not.
OMP is always optimal for 1-sparse signals so IV must have
size 2 at least and I" size 3. For some 6 € [—7/2,7/2], let

Q
B}

0s

1 0 v 0 1
0 1 <« o 1

d = V2 , = 12
0 0 sinf 0 Y 0 (12)
00 0 1 0

and " = {1,2,3}. ¢, L span(®r) so H‘Iﬁtg&H =0andT
1

satisfies the ERC. Besides we have (y, ;) = (y,¢s) = 1,

(y,4) = 0and (y, ;) = cos#+/2. So for any 6 such that

0 < |6] < %, OMP will select (4 first, although (5 does not

belong to the sparsest support IV = {1,2} C T of y, so I/
does not satisfy the ERC. O

Theorem 7 (Global nestedness for OMP). For any dictionary
®, the optimality of OMP is globally nested up to the size
s = rank(®).

Proof. Consider a dictionary ®. Assume that there is a car-
dinality s such that OMP will recover all s-sparse signals.
Theorem 5 applies so s < spark(®)/2. So all s-size sup-
ports have full rank, Theorem 3 applies and they all satisfy
the ERC.

Suppose that there is a support I of size s’ < s for which
OMRP is not optimal. Then I does not satisfy the ERC. T
has full rank so Theorem 3 applies: there is a signal y &
span(®r/) and an atom ¢ ¢ P such that OMP will select
¢ at the first iteration.

Now let I" be a superset of I of size s that does not con-
tain ¢. Such a set exists because ® contains at least as many
atoms as its spark so

s < spark(®)/2 < spark(®) < card(P)

and s < card(®). T has size s so it satisfies the ERC. There-
fore Theorem 2 applies: since y € span(®r), OMP will only
select atoms that belong to ®1. However at the first iteration,
OMP selects ¢ ¢ P, thus resulting in a contradiction. [

One should note that although the proof is valid for all
cardinalities up to rank(®), Theorem 7 is only useful up to
spark(®)/2 — 1. For s between spark(®)/2 and rank(®),
global nestedness is trivially satisified because OMP cannot

recover all s-sparse signals (because of Theorem 5) so the
hypothesis in Formula (11) is always false, therefore the im-
plication is true. For s > rank(®), global nestedness breaks:
OMP is trivially optimal at those sparsity levels since there
are no such s-sparse signals, but Theorem 5 provides a whole
range of smaller s’ < s for which OMP is not optimal.

Since the ERC and the optimality of OMP are equivalent
on full-rank supports, we also have the following immediate
corollary.

Theorem 8 (Global nestedness for the ERC). For any dictio-
nary ®, the ERC is globally nested up to s = spark(®) — 1.

Proof. For any s < spark(®), all supports of size s have
full rank. If all supports of size s satisfy the ERC, then OMP
is optimal for all of them. So Theorem 7 applies and OMP
is also optimal for all smaller supports. Since those supports
have full rank, Theorem 3 applies and they all satisy the ERC.

O

If one had a proof of Theorem 3 that does not require
a full rank support, then one could prove Theorem 8§ up to
rank(®), but then again the really useful part is only up to
spark(®)/2 — 1 and we already have it.

For the General MP class, we can only consider stability
instead of optimality:

Theorem 9 (Global nestedness for General MP). For any dic-
tionary and any General MP algorithm, the stability of the
algorithm is globally nested up to s = spark(®) — 1.

Proof. With that constraint on s, all considered supports have
full rank. In that case, the stability of General MP is equiv-
alent to the ERC and a proof with the same structure as for
Theorem 8 can be used. O

5. CONCLUSION

We have shown that the optimality of OMP is not locally
nested but is globally nested. We have also extended those
results to the whole General MP class. Those results shed a
new light on pursuit algorithms and counter the intuition pro-
vided by earlier works. To complete our proofs, we also filled
some gaps in the underlying theory and provided a formal
proof that OMP can only be optimal for signals with strictly
less than spark(®)/2 nonzero coefficients.

With our results, one can consider the ERC has a bound
on the admissible error: if a superset of the support of a sparse
signal satisfies the ERC, then it does not guarantee that OMP
will recover the signal, but it still guarantees that it will not se-
lect too many wrong atoms. This work should also allow us to
further investigate possible links between greedy algorithms
and /1 minimization.
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