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ABSTRACT

This paper proposes an orthogonal matching pursuit (OMP-)
based recovering algorithm for compressive sensing problems. This
algorithm can significantly improve recovering performance while it
can still maintain reasonable computational complexity. Complexity
analysis and simulation results are provided for the proposed algo-
rithm and compared with other popular recovering schemes. We ob-
serve that the proposed algorithm can significantly improve the exact
recovering performance compared to the OMP scheme. Moreover,
in the cases with high compressed ratio, the proposed algorithm can
even outperform the benchmark performance achieved by the sub-
space programming and linear programming.

Index Terms— Compressed sensing, orthogonal matching pur-
suit, K -best.

1. INTRODUCTION

Compressive sensing (CS) attracts extensive research attentions in
recent years. This may be because most of the data resources can be
thrown away without perceptual distortion in practical systems. An
overview of CS is given in [1]. The authors in [2] showed that exact
reconstruction is guaranteed when a sensing matrix satisfies the re-
stricted isometry property (RIP) with a constant parameter. A sparse
approximation problem is demonstrated in [2] and [4] to model the
recovering problem. An /o minimization problem used to reconstruct
sparse signals is provided in [2]. Unfortunately, the ly optimization
problem is non-convex, and is NP-hard so that such reconstruction is
difficult to be applied. To overcome this problem, a relaxed convex
{1 minimization was proposed in [3], and the reconstruction prob-
lems can be solved by linear programming (LP). However, the com-
plexity of the LP may not be feasible in many applications.

To fast decode the compressed data and still keep the complexity
as low as possible, a family of iterative greedy algorithms have been
proposed. A basic iterative algorithm called the orthogonal matching
pursuit (OMP) was proposed and analyzed in [6]. Although OMP is
much simpler than the LP, it has however been shown that the OMP
has weak guarantees of exact recovery. To improve the the recover-
ing ability, several modified schemes based on the OMP have been
proposed. One popular iterative algorithm called subspace pursuit
(SP), which updates the subspace of column set iteratively instead of
picking only one column greedily, was proposed in [5]. However, SP
needs to estimate the signals via least square solution with double-
size of sparsity and has poor performance with high compressed ra-
tio [7]. Focusing on high compressed ratio situation, the look ahead
OMP (LAOMP) algorithm, which uses multi-path OMP procedure
and has better performance than SP, is proposed in [7]. The com-
putational complexity of LAOMP is still high for large sparsity. In
addition, this algorithm may early discard the correct path and result
in serious error if the chosen element is not the correct one. The

above discussion motivates us to investigate methods which not only
can reduce complexity but also can avoid discarding correct path.

In this paper, we proposed a new recovering algorithm based
on the OMP. The proposed algorithm extends and preserves multi-
ple search paths simultaneously so that the probability of finding the
correct locations of non-zero elements can be much improved, com-
pared to the LAOMP. The complexity of the proposed scheme is only
K times higher than that of the OMP. Simulation results compare
two types of recovering performance for the proposed algorithm and
various popular recovering methods including the SP, LP, OMP and
LAOMP for Gaussian and zero-one signals. The results demonstrate
that the proposed algorithm can achieve a good trade-off between
computational complexity and recovering performance.

2. REVIEW OF COMPRESSIVE SENSING AND OMP

Compressive sensing is the process of acquiring and reconstructing
a signal that is supposed to be sparse or compressible. The transfor-
mation between high dimension and low dimension representations
can be modeled as the following linear under-determined equation:

y = ®x, (1)

where x € R" is a S-sparse signal (S-sparse means there are at
most S non-zero elements in x), y € R™ represents a vector of
compressed signal from x, and ® is an m X N sensing matrix which
transfers x to y and its ¢-th column is ¢;. Since the OMP algorithm
will be used to describe the proposed reconstruction method, we list
the procedure of OMP in Algorithm 1 for convenience.

Algorithm 1: The OMP Algorithm [6].

1: Input: A received signal y and a sensing matrix

® = [¢1"" 7¢N]‘
2: Inmitialization: Let Q = (), and the residual vector y.es = y.
3: for s =1to S do
4:  Identify: r =

argmax  [(¥res, Ok)|,
ke{l,--,N},kgQ

where (-, -) is the inner product.
Q=QU ¢,.
5:  Estimate: X = argmin ||y — ®qu||2,
uck?®
where ®q, represents a submatrix of & whose columns are
chosen from the indices set €2.
6:  Update: ys =y — ®ox.
7: end for
8: Output: Return the vector x with components z; = Z; for
j € Q and z; = 0 otherwise.
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The main procedure of the OMP are Step 4 to Step 6. Step 4 is
for identification. In this step, one column of a sensing matrix ®,

ICASSP 2013



which is most corrected with the current residuals is selected, where
the residual is the remaining part of vector y after y deducts the
effect of the chosen columns and estimated signal. Then this selected
column index are added to the set of the selected column indices ®q.
Step 5 calculates the estimated signal x, which is the least square
solution of the submatrix ®q. For the updating procedure in Step
6, the residual vector ye is updated by projecting the compressed
signal y onto the subspace spanned by the selected columns. The
steps are repeated until the number of indices in €2 is equal to S.

Although the procedure of the OMP is simple, this algorithm
only selects one column in each iteration so that it does not have
a high exact recovering rate for large sparsity. Thus the OMP has
weaker guarantee and more restrict RIP condition than the SP and
LP. To improve of the exact recovering rate of the OMP, we propose a
modified OMP-based algorithm called the K -best OMP, which pre-
serves the best K elements in each iteration and each one extends K
more best paths, in next section.

3. PROPOSED K-BEST ORTHOGONAL MATCHING
PURSUIT

The proposed K-best method can be explained by tree-search struc-
ture. A simple example can help describing the proposed scheme
easier. Let N =5, m =4, S = 3 and K = 2. Fig. 1(a) to Fig. 1(c)
show the idea of the proposed searching process. In this example,
three iterations are needed and two best paths are preserved at each
iteration. The first iteration is shown in Fig. 1(a), where we have
conducted the inner product operation (Step 4. in Algorithm 1), and
then preserve the best X' = 2 columns with the maximum absolute
inner-product values. Here the second and the fourth columns are
preserved and the numbers in the circles of the tree nodes represent
the preserved column indices of ®. At the second iteration, each of
the preserved two nodes extends K = 2 nodes with the maximum
absolute inner-product values. Therefore, there are total K 2 =4
paths. However, some of the K2 paths are repeated, e.g. the paths
{2,4} and {4,2} in Fig. 1(b) are repeated, which means these two
paths select the same columns but with different order. In this case,
we find another new node which has the third maximum absolute
inner-product value, and then eliminate the repeated path. In this ex-
ample, the new path is {4,1}. Then the residuals are updating for
these K2 paths, and the K best paths with minimum residuals are
chosen from them. Here paths {2,4} and {4, 1} are preserved at the
second iteration. The same procedure are conducted until the pre-
served number of columns equals to the number S of sparse. Fig.
1(c) shows the final iteration, where the best path {2,4,5} is se-
lected to be the solution with the minimum residual. The proposed
K-best OMP algorithm is concluded in Algorithm 2.

4. COMPLEXITY ANALYSIS

Since the proposed scheme is based on the OMP scheme, we first
analyze the complexity for OMP. For OMP procedure, the dominated
computations are Steps 4, 5 and 6 in Algorithm 1. The evaluation in
Step 4 needs N — s + 1 inner products of m X 1 vectors in the s-th
iteration. Thus the complexity is with order of O(m(N — s + 1)).
The estimated signal in Step 6 is obtained by computing the least
square solution (pseudo-inverse); that is, <I>;[2 = (®H @) '@,
Hence, in the s-th iteration, the computational complexity is of order
O(ms® + s*). The residual update in Step 7 requires complexity
order of O(ms). Therefore, we can conclude the overall complexity
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(a) The first iteration

1.Remove repeated path,

2.Extend one more path

(b) The second iteration

S=1
S=2

S=3

Choose the best path with minimum
residual at the final iteration

(¢) The final iteration

Fig. 1. An example for the proposed K-beat OMP with N = 5,
m=4,5=3and K = 2.

Algorithm 2: Proposed K -best OMP.

1: Input: A received signal y and a sensing matrix ®.

2: Initialization: For the first iteration, choose the K best
columns with the maximum inner-product values and obtain the
residuals obtained for viewing K nodes together.

3: fors =1to S do

4:  Identify: For each preserved path, extend it to K nodes with
the maximum inner-product values.

5:  Check and Renew: Check whether there is repeated path
for all K extending paths. If it is, remove the repeat path
and add a new path and, then check again until all X2 paths
contain different column indices.

6:  Estimate: Estimate the signals for all K2 preserved paths
using the Estimate step in OMP.

7. if s < S then

8: Update and Preserve: Obtain the residuals for all &2

preserved paths. Compare the l2 norms for all residuals,
and preserve the K paths which has the smallest residuals.

9: elseif s = .S then

10: Decision: Choose the path with the smallest /2 norm of
residual and whose index are the desired column set.

11: end if

12: end for

13: Output: Return the estimated signal vector corresponding to
desired column set.

s
Z(’)(m(Nf 5+ 1) +ms®> + 5° +ms) =~ O(NmS +
s=1

is with order of

msS?

).
(@)



For the proposed K-best OMP, since there are K preserved paths
from the second to K-th iterations the computations of the inner
product are K times higher than that of the OMP scheme. Also since
each path extends to K nodes. As a result K2 times evaluations
of pseudo-inversions and residual updates are needed compared to
the OMP. From the analysis for OMP, we can conclude that overall
complexity is with order of

5
ZO(Km(N — s+ 1)+ K*(ms® + s* +ms))
s=1
2, o3
~O(KNmS + %). 3)

To compare the complexity to other schemes conveniently, we
summarize the computational complexity of various schemes includ-
ing the OMP, LAOMP, the proposed OMP, SP and LP in Tab. 1.

5. SIMULATION RESULTS

In the section, simulation results are provided to demonstrate the
performance of the proposed algorithms. In all simulation, more
than 500 different sensing matrices are used. The elements of the
sensing matrix ® are i.i.d Gaussian variables with zero mean, and
the columns are normalized to unit-norm. We use S-sparse real sig-
nals whose non-zero elements generated from Gaussian source with
zero-mean and unit variance. Moreover, from [7], we define average
support-cardinality error (ASCE) as 1 — w and
the fraction of measurements (FoM) as a = 7.

Example 1. Frequency of exact reconstruction for Gaussian
signal: Let N = 200 and m = 50. Fig. 2 shows the the exact recov-
ering rate as a function of the sparsity .S. For the Gaussian signal, we
see that both the SP and LP schemes has the recovering ability that
can perfectly reconstruct signals with sparsity (called critical spar-
sity in [5]) up to S = 8; the OMP algorithm which has the worst
performance can achieve exact reconstruction for S < 4 due to its
weak and nonuniform guarantees of exact recovery. Compared to
the OMP, the proposed scheme with K = 2 can improve the critical
sparsity from 4 to 8 and outperforms SP and LP for S > 8.

Compared to the LAOMP [7], the proposed algorithm is not only
better than the LAOMP under the same K but the complexity of the
proposed method is much lower than the LAOMP (see Tab. 1). It
is worth to emphasize that, unlike LAOMP whose recover ability
is insensitive to the increment of K, the recover rate performance
of proposed algorithm can be improved significantly while K is in-
creased. In a case with K = 5 and 10, the recovering ability of the
proposed method can be up to 12, and the performance gap between
the proposed method and the LAOMP becomes more pronounced.

Example 2. Average support-cardinality error for Gaussian:
In this example, the distortion of locations for sparse elements is
considered. Let N = 200 and S = 10. ASCE performance versus
a, i.e. FoM, for the Gaussian signal is shown in Fig. 3. Observ-
ing that for the range of o from 0.1 to 0.3, the SP and LP schemes
perform worse than the OMP-based methods. This implies that in
high compressed ratio (IN/m) scenario, if the sparse signals can-
not be exactly reconstructed, the SP and LP may lead to serious er-
ror of the non-zero locations. Interestingly, the OMP-based meth-
ods have much better correcting rate of non-zero locations than the
SP and LP. Furthermore, the multi-path OMP schemes i.e. LAOMP
and the proposed K -best OMP greatly outperform the conventional
OMP scheme. On the other hand, the ASCE of the proposed K-best
OMP is slightly worse than that of the LAOMP when K = 2. For
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Fig. 2. Recovering rate for Gaussian signal (/N = 200, m = 50).

K = 5 and 10, however, the performance of the proposed method
exceeds the LAOMP. At extreme « values from 0.1 to 0.14, the
proposed algorithm with K = 5 even outperforms LAOMP with
K = 10. Therefore, we conclude when the complexity of the pro-
posed scheme and the LAOMP is comparable, the proposed algo-
rithm should outperform the LAOMP.

N=200, S=10, Gaussian signal
T T T T

—+-LP ]
—£— OMP
—— proposed algorithm, K=2 1
-&-LAOMP [8], K=2
—E— proposed algorithm, K=5 q
- B -LAOMP [8], K=5
—7— proposed algorithm, K=10 4
-7 -LAOMP [8], K=10

(average support cardinality error)

1
0.18
o (Fraction of measurements)

L I
0.12 0.14

Fig. 3. ASCE performance for Gaussian signal (N = 200, S = 10).

Example 3. Recovery performance and complexity under
fixed 75 values: In this example, we would like to investigate how
the compressed ratio affect the recovering performance. Let N =
200 and fix the ratio of g = 5. Fig. 4 shows the exact recovering
rate versus m for the Gaussian signal. Observe that when o« < 0.15,
the OMP-based algorithms perform better than the SP and LP. That
is, in a high compressed ratio, the SP and LP do not work well,
especially the performance of the LP may crash down seriously. On
the other hand, for the OMP-based schemes, the proposed K-best
OMP and the LAOMP both significantly improve the performance
of the conventional OMP. For K = 2, the proposed algorithm and
the LAOMP can even keep the recovering ratio above 0.9 at o =
0.1; for K = 5, the recovering ratio can further be increased up
to 0.95. Moreover, at this case we can find the proposed algorithm



Table 1. Complexity comparison of various CS recovering algorithms

. The proposed
Algorithm || OMP [6] LAOMP [7] prop SP [5] LP [8]
K-best OMP
. 3 3 KZ 3 3
Complexity order O[NmS + %] O[%(NmS + ’”f )] O{KNmS + T’”S) O (NmS +2mS*) O|m’N?
Example for
N =256,m=64| 3.495x10° 5.592x10° 8.738x10° 7.864x10° |1.678x10’
S=16,K=2
outperforms the LAOMP slightly with the same K. This observation 55210 N=200, m/S=5
is exciting because it means that under the cases of high compressed ' ‘ ‘ ‘ ‘ ‘ ‘ ‘
ratio, the proposed algorithm can maintain outstanding recovering ol
rate but with much lower complexity than other schemes. To see o-5p
this, the corresponding complexity comparison is also provided in 250 | —4—LP
Fig. 5. We see that the OMP has the lowest complexity; the SP has —%-OMP

slightly higher complexity than the OMP. The LP has the highest
complexity because its complexity order is proportional to N 3/2,
When K = 2, the complexity order of proposed algorithm is very
closed to the SP and the OMP because the dominated term of (3) is
K NmS, only roughly two times of the OMP. On the other hand, the
LAOMP is much complicated than the proposed algorithm because
its complexity is proportional to S. When K = 5, although the
complexity growth of the proposed algorithm becomes fast, it is still
much lower than the LAOMP and LP. Moreover, the complexity of
the LAOMP is grows faster than the LP for K' = 5; more specifically
when a > 0.46, the complexity of the LAOMP exceeds the LP.

o
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Fig. 4. Recovering rate for Gaussian signal (N = 200, g = 5).

6. CONCLUSION

In this paper, a new algorithm, named K-best OMP that finds the
best matching projections onto an over-complete dictionary, is pro-
posed. The proposed method preserves the K best paths at each
iteration to enlarge the probability of keeping the correct locations
of sparse signals. Furthermore, the computational complexity anal-
ysis of the proposed scheme and its comparison to other schemes in-
cluding the OMP, LAOMP, SP and LP were also provided. Finally,
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Fig. 5. Complexity order for Gaussian signal (N = 200, g = 5).

simulation results were given to show the advantages of the proposed
scheme in terms of complexity and recovering performance.
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