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ABSTRACT

The derivation of explicit Karhunen-Loève transform (KLT)
kernel for an auto-regressive order one, AR(1), process has
been of a major implementation concern. The main reason
is due to difficulties in finding the roots of a transcendental
tangent equation as required in the derivation. We propose a
novel method to derive explicit KLT kernel for discrete AR(1)
process. The merit of the proposed technique is highlighted.
The proposed method has a good potential to make real-time
KLT applications more feasible in the coming years.

1. INTRODUCTION

The Karhunen-Loève transform (KLT) is the optimal block
transform. Its basis functions are generated for a given sig-
nal covariance matrix [1]. It is a signal dependent transform.
In contrast, the popular transforms like discrete Fourier trans-
form (DFT) and discrete cosine transform (DCT) have their
fixed kernel to define an orthogonal set regardless of signal
statistics. Therefore, they are called signal independent or
fixed transforms. Fast implementation of KLT is of great
interest in various disciplines. There were prior studies to
derive closed form kernel expressions for certain classes of
stochastic processes reported in the literature. In particular,
the derivation of such a kernel in its implicit form for pro-
cesses with exponential correlation was reported [2–6]. Those
methods require us to solve a transcendental tangent equa-
tion by using either numerical techniques with convergence
concerns, or complex methods for explicit expression of KLT
kernel. In this paper, we introduce a simple method to de-
rive explicit KLT kernel for discrete AR(1) process by using
an efficient root-finding technique introduced in [7]. A sum-
mary of this derivation is presented in Section 4 [8]. We show
and validate its merit with performance comparisons given in
Section 5. Then, we make our concluding remarks in the last
section.

*Corresponding author: akansu@njit.edu

2. ORTHOGONAL TRANSFORMS

A family of linearly independent N orthonormal discrete-
time sequences, {φk(n)}, on the interval 0 ≤ n ≤ N − 1
satisfies the relationship [1]

N−1∑
n=0

φk(n)φ∗l (n) = δk−l, (1)

where δk is the Kronecker delta function. In matrix form,
{φk(n)} are the rows of the transform matrix, also called ba-
sis functions,

Φ = [φk(n)] : k, n = 0, 1, ..., N − 1, (2)

with the orthogonality property stated as

ΦΦ−1 = ΦΦ∗T = I, (3)

where ∗T indicates conjugated and transposed version of
a matrix and I is N × N identity matrix. A signal vector
x =

[
x(0) x(1) · · · x(N − 1)

]T
is mapped into the

orthonormal space through forward transform operator

θ = Φx, (4)

where θ =
[
θ(0) θ(1) · · · θ(N − 1)

]T
is transform

coefficients vector. Similarly, the inverse transform yields the
signal vector

x = Φ−1θ. (5)

We assume that the vector x is populated by a wide-sense sta-
tionary (WSS) stochastic process. The correlation and covari-
ance matrices of such a random vector process x are defined,
respectively,

Rx = E
{
xx∗T

}
,

Cx = E
{

(x− µ) (x− µ)
∗T
}

= Rx − µµ∗T,
(6)

where µ =
[
µ µ · · · µ

]T
. The covariance matrix of

transform coefficients is derived as follows

Rθ = E
{
θθ∗T

}
= E

{
Φxx∗TΦ∗T

}
= ΦRxΦ∗T. (7)
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3. EIGENANALYSIS OF AR(1) PROCESS

Auto-regressive (AR), moving average (MA), and auto-
regressive moving average (ARMA) have been popular
source models to describe real world signals. AR source
model has been successfully used in speech processing for
decades. AR model with order one, AR(1), is a first approxi-
mation to many natural signals like images, and employed in
various applications. AR(1) signal is generated through the
first order regression formula written as [1]

x(n) = ρx(n− 1) + ξ(n), (8)

where ξ(n) is a white noise sequence with zero mean, i.e.
E {ξ(n)ξ(n+ k)} = σ2

ξδn−k. The first order correlation co-
efficient, ρ, is real in the range of −1 < ρ < 1, and the
variance of x(n) is σ2

x = (1 − ρ2)−1σ2
ξ . Auto-correlation

sequence of x(n) is expressed as

Rxx(k) = E {x(n)x(n+ k)} = σ2
xρ
|k|; k = 0,±1,±2, . . . .

(9)
The resulting Toeplitz correlation matrix of size N × N is
defined as

Rx = [Rx(k, n)] = σ2
xρ
|n−k|; k, n = 0, 1, ..., N − 1. (10)

From linear algebra, it is known that an eigenvalue λ and an
eigenvector φ with sizeN×1 of a matrix Rx with sizeN×N
must satisfy the eigenvalue equation [1, 2, 9]

Rxφ = λφ. (11)

It is rewritten as

Rxφ− λIφ = (Rx − λI)φ = 0, (12)

such that (Rx − λI) is singular. Namely,

det (Rx − λI) = 0. (13)

We assume that Rx is non-defective, i.e. its eigenvectors with
different eigenvalues are linearly independent, and this deter-
minant is a polynomial in λ of degree N . Therefore, (13) has
N roots and (12) hasN solutions for φ that result in the eigen-
pair set {λk,φk} where 0 ≤ k ≤ N−1. Hence, we can write
the eigendecomposition for a non-defective Rx with distinct
eigenvectors as follows

Rx = A∗TKLTΛAKLT =

N−1∑
k=0

λkφkφ
∗T
k , (14)

where Λ = diag (λk) ; k = 0, 1, . . . , N − 1, and kth column
of A∗TKLT matrix is the kth eigenvector φk of Rx with the
corresponding eigenvalue λk. Note that

{
λk = σ2

k

}
∀k, for

the given Rx where σ2
k is the variance of the kth transform

coefficient, θk. The eigenvalues of Rx for an AR(1) process
defined in (10) are derived to be in the form [3]

σ2
k = λk =

1− ρ2

1− 2ρ cos(ωk) + ρ2
; 0 ≤ k ≤ N − 1, (15)

where {ωk} are the positive roots of the following equation

tan(Nω) = − (1− ρ2) sin(ω)

cos(ω)− 2ρ+ ρ2 cos(ω)
, (16)

that is equivalent to [8]

(
tan

ωN

2
+ γ tan

ω

2

)(
tan

ωN

2
− 1

γ
cot

ω

2

)
= 0.

γ = (1 + ρ) / (1− ρ) , (17)

The resulting KLT matrix of sizeN×N is expressed with the
explicit kernel as [3]

AKLT = [A(k, n)] = ck sin

[
ωk

(
n− N − 1

2

)
+

(k + 1)π

2

]
ck =

(
2

N + λk

)1/2

, 0 ≤ k, n ≤ N − 1. (18)

Note that the roots of the transcendental tangent equation in
(17), {ωk}, are required in the KLT kernel as defined in (18).
There are well-known numerical methods like secant method
[10] to approximate roots of the tangent equation given in
(17) in order to solve it explicitly. We focus on an efficient
root finding method proposed by Luck and Stevens [7] to find
explicit solutions for transcendental equations including the
tangent equation of (17). It leads us to explicit definition and
derivation of KLT kernel given in (18) for an AR(1) process.
The derivation details of (15) and (16) are given in [8].

4. A NOVEL METHOD FOR EXPLICIT KLT
KERNEL OF AR(1) PROCESS

In order to derive an explicit expression for the discrete KLT
kernel, according to (17), we need to calculate the first N/2
positive roots of the following two transcendental equations

tan
ωN

2
= −γ tan

ω

2
(19)

tan
ωN

2
=

1

γ
cot

ω

2
. (20)

Note that roots of (19) and (20) correspond to the even and
odd indexed eigenvalues and eigenvectors, respectively [8].
Fig. 1 displays functions tan (ωN/2) and −γ tan (ω/2) for
N = 8 and various values of ρ. It is apparent from the figure
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N = 4 0.157 0.815 1.584 2.362
N = 8 0.109 0.423 0.801 1.188 1.577 1.968 2.359 2.750
N = 16 0.075 0.224 0.408 0.599 0.793 0.988 1.183 1.378 1.574 1.770 1.966 2.162 2.358 2.554 2.750 2.946

Table 1. The values of {ωk} for ρ = 0.95 and N = 4, 8, 16.
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Fig. 1. Functions tan (ωN/2) and −γ tan (ω/2) for N = 8
and various values of ρ for ρ1 = 0.9, ρ2 = 0.6, and ρ3 = 0.2
where γi = (1 + ρi) / (1− ρi), i = 1, 2, 3.

that for the mth root of (19), a suitable choice for the closed
path C discussed in [7] is a circle of radius

Rm =

{
π/4N m ≤ 2

π/2N m > 2
, (21)

centered at hm = (m− 1/4)π/N where 1 ≤ m ≤ N/2. We
reconfigure (19) and rather look for the poles of the following
inverse function

g(ω) =
1

tan (ωN/2) + γ tan (ω/2)
. (22)

The function w(θ) defined in (4) of [7] for this case is defined
as

wm(θ) = g
(
hm +Rme

jθ
)

=
1

tan
[
(hm +Rmejθ)

N
2

]
+ γ tan

[
(hm +Rmejθ)

1
2

] ,
(23)

where 0 ≤ θ ≤ 2π. Hence, the mth root is located at

ωm = hm +Rm

[´ 2π
0
wm(θ)ej2θdθ´ 2π

0
wm(θ)ejθdθ

]
. (24)

The procedure is the same for deriving the roots of (20) with
the exceptions that (23) must be modified as follows

wm (θ) =
1

tan
[
(hm +Rmejθ)

N
2

]
− 1

γ cot
[
(hm +Rmejθ)

1
2

] ,
(25)

and a suitable choice for the closed path C is a circle of radius
Rm = π/2N centered at

hm =

{
(m− 1/2)π/N m ≤ 2

(m− 1)π/N m > 2
, (26)

that can be determined by generating a plot similar to the one
displayed in in Fig. 1. As an example, roots {ωk} of the
transcendental tangent equation, calculated by using (24) for
ρ = 0.95 and N = 4, 8, 16 are tabulated in Table 1.

The implementation of the novel method to derive an ex-
plicit KLT kernel of dimension N for an arbitrary discrete
data set modeled as an AR(1) is summarized as follows.

1. Estimate the first order correlation coefficient ρ =
Rxx(1)/Rxx(0) = E {x(n)x(n+ 1)} /E {x(n)x(n)}
of AR(1) model for the given data set {x(n)} where n
is the index of random variables (or discrete-time) and
−1 < ρ < 1.

2. Calculate the positive roots {ωk} of the polynomial
given in (17) by substituting (23) and (25) into (24)
for even and odd values of k, respectively, and use the
following indexing

m =

{
k/2 + 1 k even
(k + 1) /2 k odd

. (27)

The MATLABTM code given in Alg. 1 shows the sim-
plicity of this root finding method to solve a transcen-
dental equation. It is observed from (24) and Alg. 1
(last line) that we do not need all DFT (FFT) coeffi-
cients to solve the problem since it requires only two
Fourier series coefficients [8]. Therefore, it is possible
to further improve the computational cost of the root
finding method displayed in Alg. 1 by employing a dis-
crete summation operator. Hence, it will have a com-
putational complexity of O(N) instead of O (NlogN)
required for FFT algorithms.

3. Plug in the values of ρ and {ωk} in (15) and (18) to
calculate the eigenvalues λk and eigenvectors defining
the KLT matrix AKLT , respectively.
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Algorithm 1 MATLABTM code of the method to calculate
roots of transcendental equation given in (20). For ρ =
0.95, first root is calculated as 0.109447778298128 using this
function. Corresponding eigenvalue calculated from (15) is
7.030310314016490. The numerical DQ algorithm [9] calcu-
lates it as 7.030310314016507.
rho = 0.95; % Corr. Coeff.
N = 8; % Transform Size
L = 1024; % FFT Size
m = 1; % Root Index
if m <= 2; h=pi/N*(m-1/2);
else h = pi/N*(m-1);end
R = pi/N/2;
t = linspace(0, 2*pi*(1-1/L), L); % Theta
z = h+R*exp(1i*t); % 1i is the imaginary unit
gamma = (1 + rho)/(1-rho);
w = 1./(tan(z*N)-1/gamma*cot(z));
W = fft(conj(w),L);
omega = 2*(h + R*W(3)/W(2));

Remark 1: The computational cost of the proposed method
to derive KLT matrix of size N × N for an arbitrary signal
source has two distinct components. Namely, the calculation
of the estimated first order correlation coefficient ρ for the
given signal set, and the calculation of the roots {ωk} of (17)
that are plugged in (18) to generate the resulting transform
matrix AKLT .

Remark 2: Other processes like higher order AR, auto regres-
sive moving average (ARMA), and moving average (MA) can
also be approximated by using AR(1) modeling [11]. There-
fore, the proposed method to drive explicit KLT kernel may
also be beneficial for other random processes of interest.

Remark 3: It was reported that the signal independent DCT
kernel is identical to the KLT kernel of discrete AR(1) process
in the limit when ρ→ 1 [12].

5. KERNEL DERIVATION EFFICIENCY

Now, we compare the computational cost of generating KLT
kernel for the given statistics by employing a widely used
numerical algorithm called divide and conquer (DQ) [9] and
the forwarded explicit method expressed in (18). In addition,
we measure the discrepancy between the kernels generated
by the two competing derivation methods. A distance metric
between the two kernels is defined as follows

dN =
∥∥A∗TKLT,DQAKLT,DQ −A∗TKLT,EAKLT,E

∥∥
2
, (28)

where ‖·‖2 is the 2-norm, AKLT,DQ and AKLT,E are
N × N KLT kernels obtained by using DQ and the new
explicit derivation method (18), respectively. Note that the
performance of the proposed method in terms of precision
and derivation speed highly depends on the FFT size used
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Fig. 2. (a) Computation time, in seconds, to calcu-
late AKLT,DQ and AKLT,E (with FFT sizes, L =
256, 512, 1024) for ρ = 0.95 and 16 6 N ≤ 1024, (b) Corre-
sponding discrepancies, dN , measured by using (28) for dif-
ferent N and FFT sizes.

in evaluating (24). Therefore, the distance metric, dN , of
(28) and the time it takes to calculate the kernel by using
(18) are affected by the FFT size. Computation times (in
seconds) to generate AKLT,DQ and AKLT,E (FFT sizes
of L = 256, 512, 1024) for the case of ρ = 0.95 and
16 6 N 6 1024 are displayed in Fig. 2.a. Both computa-
tions are performed by using one thread on a single processor.
It is observed from Fig. 2.a that the proposed method signifi-
cantly outperforms the DQ algorithm for larger values of N .
Moreover, corresponding distances, dN , measured with (28)
for different N and FFT sizes are displayed in Fig. 2.b. They
show that the proposed method is much faster than the cur-
rently used numerical methods with negligible discrepancy
between the two kernels.

6. CONCLUSIONS

A simple method to derive explicit KLT kernel for discrete
AR(1) process is introduced in this paper. Its analytical
framework and implementation details are presented. The
merit of the proposed technique is highlighted by perfor-
mance comparison with the widely used numerical DQ algo-
rithm. The proposed method can be easily implemented on
devices with highly parallel computing architectures such as
field programmable gate array (FPGA) and graphics process-
ing unit (GPU) with further performance improvements, in
particular, for real-time and data intensive applications.
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