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ABSTRACT
This paper describes an extension to total variation denoising

wherein it is assumed the first-order difference function of the un-
known signal is not only sparse, but also that large values of the first-
order difference function do not generally occur in isolation. This
approach is designed to alleviate the staircase artifact often arising in
total variation based solutions. A convex cost function is given and
an iterative algorithm is derived using majorization-minimization.
The algorithm is both fast converging and computationally efficient
due to the use of fast solvers for banded systems.

Index Terms— total variation, sparse signal processing, L1
norm, group sparsity, denoising, filter, convex optimization.

1. INTRODUCTION

Total variation (TV) [27] is commonly used as a penalty function in
sparse signal processing. For example, total variation has been used
extensively for denoising [5, 7, 8, 27], deconvolution [3, 22, 23], re-
construction [32], nonlinear decomposition [29,31], and compressed
sensing [33]. Numerous algorithms have been developed for TV-
regularized inverse problems, e.g. [5–7, 26, 32, 35]. For 1-D TV de-
noising, the exact solution can be obtained by a direct algorithm [10].

However, total variation has some shortcomings. Signals pro-
duced via TV-based processing often exhibit stair-case artifacts
(which appear as artificial contours in images). For this reason,
several generalizations and extensions of total variation have been
proposed in the literature [4, 15, 18, 19, 26]. While total variation
is suitable for piecewise-constant signals (i.e. signals with a sparse
derivative function), for signals that are locally approximated by
higher order polynomials, generalized forms of total variation, such
as those referenced, are more appropriate.

This paper describes an extension of total variation that aims to
take into account group sparsity characteristics of signal derivatives.
That is, it is assumed here that the signal of interest has a derivative
that is not only sparse, but exhibits a simple form of structured spar-
sity. Specifically, it is assumed that large values of the derivative are
not isolated, but usually arise near, or adjacent to, other large values.
In this sense, points where the signal value changes rapidly, have
a clustering or grouping property. Such a signal is approximately
piecewise constant; however, the edges (step changes) of the signal
are not exact discontinuities, but instead extend over some interval.

The approach described in this paper, like conventional total
variation methods, is based on the minimization of a convex non-
differential cost function. The group/clustering behavior of the sig-
nal derivative is promoted by a suitable penalty function. It is an
objective of this work that the processing be translation-invariant. It
is not assumed that the groups are known in advance of the process-
ing (this paper focuses on 1D signal denoising). Moreover, it is not
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intended that the grouping behavior be clearly defined in the signal,
as many natural signals are not so simply described. The group-
ing property referred to here, is the general tendency of large values
to congregate rather than to occur in isolation. For this reason, the
groups arising in the problem formulation are fully overlapping (as
in sliding window processing, with the window being translated one
sample at a time).

The iterative algorithm developed in this paper is derived using
the majorization-minimization (MM) optimization method [13]. The
algorithm is formulated so that the main computational step consists
of solving a tridiagonal system of equations per iteration, which can
be done very efficiently with fast solvers for banded systems of lin-
ear equations. The algorithm does not require any parameters (step
size, etc.). The problem formulation and algorithm are illustrated
with two examples: an artificial signal and a row extracted from a
standard test image.

1.1. Related Work

Previous generalizations of total variation (e.g., above cited works)
generally focus on improving its performance for signals that have
a higher order smoothness than piecewise constant signals; for ex-
ample, by replacing the first-order difference by which (discrete) TV
is defined, by a higher order filter. On the other hand, the general-
ization discussed in this work, like conventional TV, is suitable for
signals that are largely constant (flat), but for which changes in value
are not exact discontinuities.

This work uses group sparsity concepts that have been previ-
ously used for sparse signal processing. Group lasso [34], a gen-
eralization of the lasso [30], is suitable when the signal to be es-
timated is known to be group sparse with non-overlapping groups
and the group structure is known a priori. In contrast, for general
signal denoising and restoration, the groups (clusters) of large val-
ues may arise anywhere in the domain of the signal. In this case,
if the group structure were defined a priori, a group of large val-
ues may straddle two of the predefined groups. Hence, it is suit-
able to formulate the problem in terms of overlapping groups, as in
Refs. [1,2,9,11,12,16,17,24]. The penalty function (4), below, is of
the form that is most studied and utilized in these works. This paper
utilizes the overlapping-group sparsity-promoting penalty function
(4) for the purpose of total variation denoising. In addition, the al-
gorithm derived below, is distinct from previous algorithms for over-
lapping sparsity. Previous algorithms call for auxiliary variables (via
variable splitting, replication, etc.) proportional to the overlapping
factor, which entails additional memory proportional to the group
size. The MM algorithm below does not utilize auxiliary variables
nor does it require excess memory.

We note that, for overlapping group sparsity, an alternative to the
penalty function (4), is the one proposed in [21]. As future work, it
will be interesting to compare group-sparse total variation denoising
using each of the two formulations of overlapping group sparsity.
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1.2. Notation

An N -point signal x(n), n = 0, . . . , N � 1, is represented as the
column vector,

x = [x(0), . . . , x(N � 1)]T 2 RN
.

The first-order difference matrix is represented by D, i.e.,

D =

2

6664

�1 1
�1 1

. . .
�1 1

3

7775
. (1)

The first-order difference of an N -point signal x is given by Dx

where D is of size (N � 1)⇥N .
A K-point group of the vector v will be denoted by

vn,K = [v(n), . . . , v(n+K � 1)] 2 CK
. (2)

This is a block of K contiguous samples of v starting at index n.

2. GROUP-SPARSE TOTAL VARIATION DENOISING

It is assumed the unknown signal x 2 RN is observed in additive
independent white Gaussian noise w. As described in the Introduc-
tion, it is assumed that the derivative (first-order difference, given by
Dx) of x has a group sparse behavior. Given data, y = x + w,
an estimate of x can be obtained as the solution to the optimization
problem

x

⇤ = arg min
x2RN

⇢
F (x) =

1
2
ky � xk22 + ��(Dx)

�
(3)

where � is a penalty function that promotes group sparsity. Note that
v = Dx 2 R(N�1), hence � : R(N�1) ! R(N�1).

In this work, we use the function � defined by

�(v) =
X

n

"
K�1X

k=0

|v(n+ k)|2
#1/2

. (4)

This regularizer is commonly used to promote group sparsity [1, 2,
11, 12, 16, 17, 24]. The group size is denoted by K. (A different
regularizer to promote group sparsity is given in [21].)

In (4), for n+ k outside the index range of v, we take v(n+ k)
as zero.

If K = 1, then �(v) = kvk1 and problem (3) is the standard
1D total variation denoising problem. If K > 1, then the function
�(v) is a convex measure of group sparsity. We refer to problem (3)
as group-sparse total variation (GS-TV) denoising.

2.1. An Majorization-Minimization Algorithm

We use majorization-minimization (MM) as in [28] to derive a com-
putationally efficient, fast converging, algorithm to minimize F (x).
Using (2), the penalty function �(v) can be written as

�(v) =
X

n

kvn,Kk2. (5)

To find a majorizor of F (x) defined in (3), we first find a majorizor
of �(v). To this end, note that

1
2kuk2

kvk22 +
1
2
kuk2 � kvk2 (6)

for all v and u 6= 0 with equality when u = v. Using (6) for each
group, a majorizor of �(v) is given by

g(v,u) =
1
2

X

n


1

kun,Kk2
kvn,Kk22 + kun,Kk2

�

with
g(v,u) � �(v), g(u,u) = �(u) (7)

provided kun,Kk2 6= 0 for all n. Note that g(v,u) is quadratic in
v. It can be written as

g(v,u) =
1
2
v

T
⇤(u)v + C (8)

where C does not depend on v, and where ⇤(u) is a diagonal matrix
given, after some manipulations, by

[⇤(u)]n,n =
K�1X

j=0

"
K�1X

k=0

|u(n� j + k)|2
#�1/2

. (9)

The entries of ⇤ can be easily computed by point-wise squaring, a
K-point moving sum, point-wise square-root, and a second K-point
moving sum. Using (8), a majorizor of F (x) is given by

G(x,u) =
1
2
ky � xk22 + � g(Dx,Du) (10)

=
1
2
ky � xk22 +

�

2
x

T
D

T
⇤(Du)Dx+ �C, (11)

i.e.,
G(x,u) � F (x), G(u,u) = F (u). (12)

To minimize F (x), the majorization-minimization (MM) de-
fines an iterative algorithm via:

x

(i+1) = argmin
x

G(x,x(i))

where i is the iteration index. The iteration is initialized with some
x

(0). Here, the MM iteration gives

x

(i+1) = argmin
x

ky � xk22 + �x

T
D

T
⇤(Dx

(i))Dx, (13)

which has the solution

x

(i+1) =
⇣
I+ �D

T
⇤(Dx

(i))D
⌘�1

y (14)

where the diagonal matrix ⇤(Dx

(i)) depends on Dx

(i) per (9).
Note that some of the diagonal entries of ⇤(Dx

(i)) generally go
to infinity as Dx

(i) becomes sparse. This is a source of numerical
inaccuracy in the update equation (14). To avoid this issue, we use
the matrix inverse lemma as suggested in [14]. Using the matrix
inverse lemma, the inverse in (14) can be written as

⇣
I+ �D

T
⇤(Dx

(i))D
⌘�1

= I�D

T

✓
1
�

⇤

�1(Dx

(i)) +DD

T

◆�1

D.

(15)

Using (15), the update (14) can be written as

x

(i+1) = y �D

T
⇣ 1

�

⇤

�1(Dx

(i)) +DD

T

| {z }
banded

⌘�1
Dy. (16)
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Algorithm: GS-TV denoising
input: y, K, �

1. x = y (initialization)

2. b = D

T
y

repeat
3. u = Dx

4. [⇤]n,n =
K�1X

j=0

"
K�1X

k=0

|u(n� j + k)|2
#�1/2

5. F =
1
�

⇤

�1 +DD

T (F is tridiagonal)

6. x = y �D

T (F�1
b) (use fast solver)

until convergence
return: x

Table 1: Group-sparse total variation (GS-TV) denoising algorithm.

The update equation (16) constitutes an iterative algorithm for solv-
ing the group-sparse total variation (GS-TV) denoising problem (3).
The algorithm1 is summarized in Table 1.

Note that the update equation (16) requires the solution to a large
system of linear equations. However, the system matrix is banded
(in fact, tridiagonal), hence the solution can be computed with high
computational efficiency [25, Sect 2.4]. Note that the algorithm re-
quires no user parameters (no step size parameters, etc.).

Convergence. Due to the derivation of the GS-TV algorithm using
majorization-minimization, it is guaranteed that the cost function de-
creases at each iteration. However, the convergence of the algorithm
to the minimizer is not so easily proven due to the ‘singularity is-
sue’ that is known to arise in algorithms of this general form [13].
In [13,22], the singularity issue and convergence of this type of MM
algorithm was analyzed in detail and it was found that, with suit-
able initialization, the singularity issue generally does not hinder the
convergence.

In the GS-TV algorithm (Table 1), the singularity issue may
arise if it is not properly taken into account. Specifically, if an entire
group of u equals zero, then the calculation of ⇤(u) in (9) results
in a ‘divide-by-zero’. For this reason, it is important that the al-
gorithm be initialized with a vector, u(0) = Dx

(0), for which all
groups are non-zero. In case a divide-by-zero does occur during the
course of the algorithm in the calculation of [⇤(u)]n,n for some
n, then it is suitable to assign a value of ‘infinity’ to that entry of
⇤. Note that ⇤ is subsequently used in the algorithm as ⇤�1 only.
Hence, [⇤(u)]�1

n,n should be set to zero in this case. Once a group
becomes equal to zero on some iteration, then it will remain zero
for all subsequent iterations. This phenomenon (‘zero-locking’) is
also recognized in algorithms of this general form [13]. However,
it does not usually hinder the convergence of the GS-TV algorithm
because this algorithm gradually reduces values to zero, rather than
thresholds values directly to zero.

While the MM procedure was used to derive the proposed algo-

1A MATLAB implementation of the algorithm is available online at
http://eeweb.poly.edu/iselesni/gstv. The MATLAB pro-
gram uses sparse matrix structures so that fast solvers for banded systems
are invoked by default.
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Fig. 1: Example 1. (a) Noise-free signal, (b) noisy data, (c) TV
denoising, and (d) group-sparse TV denoising. First-order difference
function for (e) TV denoising and (f) group-sparse TV denoising.
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Fig. 2: Example 2: TV and group-sparse TV denoising. The signal is
row 256 of the ‘lena’ image (512⇥512). Group-sparse TV denoising
exhibits fewer stair-case artifacts and has improved RMSE compared
with TV denoising.

rithm, other optimization approaches for signal restoration and gen-
eral linear inverse problems may lead to equivalent algorithms, e.g.,
half-quadratic minimization [20].

2.2. Examples

Example 1. Figure 1 illustrates group-sparse total variation denois-
ing. The simple synthetic test signal consists of a second order
polynomial segment and two constant-valued intervals, illustrated
in Fig. 1a. The signal is corrupted by additive white Gaussian noise.
The result of TV denoising, illustrated in Fig. 1c, exhibits stair-case
artifacts in the polynomial segment, as expected of TV denoising.
Group-sparse TV denoising, shown in Fig. 1d, substantially reduces
the stair-case behavior, and yields a smaller root-mean-square-error
(RMSE). Here, the group size was set to K = 3.

To highlight the distinction between the two denoised signals,
Figs. 1e and f show the absolute value of the first-order difference
function, |Dx|, for each of the two solutions. Total variation pro-
motes sparsity of |Dx| but does not promote any grouping or clus-
tering tendencies — large values in Fig. 1e are adjacent to small
values. In contrast, large values in Fig. 1f are generally adjacent to
other large values. The group-sparse penalty function has the effect
of smoothing the sparse derivative signal.

The rapid convergence of the algorithm is illustrated in Fig. 1g,
which shows the cost function value, F (x(i)), as a function of itera-
tion i.

Example 2. Figure 2 illustrates group-sparse TV denoising on a
single row of a standard test image (row 256 of ‘lena’). Compared to
TV, group-sparse TV leads to a result with less artificial blockiness
in the denoising signal. (The signal around n = 300 is shown in
detail.) In addition, GS-TV reduces the RMSE compared with TV
denoising (6.41 compared with 6.85). To examine the effect of group
size K and regularization parameter �, we computed the RMSE as
a function of � for group sizes from 1 through 10. The result is
illustrated in Fig. 2 (bottom). It can be seen that the minimal RMSE
is obtained for group size K = 6 and � = 2.6. These are the values
used to illustrate GS-TV in the figure. Note that the GS-TV solution
is not totally different from the TV solution — they are both based
on sparsity of the first-order difference function.

3. CONCLUSION

This paper describes an extension to total variation denoising
wherein it is assumed that the first-order difference function of
the unknown signal is not only sparse, but also exhibits a basic form
of structured sparsity: large values of the first-order difference func-
tion are not expected to occur in isolation. It is intended that this
approach alleviates the staircase (blocking) artifact often arising in
total variation based solutions. A convex cost function is given and
an iterative algorithm is derived using majorization-minimization.
The algorithm is both fast converging and computationally efficient
due to the use of fast solvers for banded systems. On the whole, TV
and GS-TV are not totally dissimilar, hence GS-TV is expected to
retain the effectiveness of TV in sparse signal processing applica-
tions, such as compressed sensing, etc. As noted by a reviewer, a
question remains regarding how a suitable parameters K and � can
be chosen based on minimal knowledge of the signal characteristics.

Further extensions of this work are of interest. Group-sparse TV
denoising can also be performed for images and multidimensional
data. Non-convex penalty functions can be used so as to enhance
group-sparsity. We are currently developing these extensions.
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