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ABSTRACT

The Proportionate Normalized Least Mean Squares (PNLMS) algo-
rithm has been quite successful in combining higher convergence
rates with low to moderate complexity that at the same time avoids
numerical difficulties in fixed-point implementations. While the al-
gorithm is stable in the mean square and l2-sense for time-invariant
matrices, the treatment of time-variant matrices requires additional
approximations. These approximations are discarded in this paper
which allows us to analyse the robustness in terms of l2-stability for
actually time-variant matrix step-sizes. This provides important re-
sults, as the algorithm in its variants also occurs in other fields of
adaptive filtering such as cascaded filter structures. By simulations
as well as by theoretical analysis, we demonstrate that in general,
even small variations of the matrix step-size are sufficient for the al-
gorithm to loose its robustness. Only in special cases, where specific
constraints are imposed additionally, robustness can be guaranteed.

Index Terms— PNLMS, matrix step-size, stability, conver-
gence, robustness

1. INTRODUCTION

Adaptive gradient algorithms like the Least Mean Squares (LMS) al-
gorithm are widely used for parameter estimation due to their read-
ily achievable stability and their low computational complexity. The
downside of such algorithms is their comparably slow convergence
rate which reduces with increasing number of parameters to esti-
mate [1, 2]. For example, in acoustic echo cancellation, this may
become critical since the length of the expected room impulse re-
sponses (RIRs) can be considerably high, while a fast echo compen-
sation is desired. Nevertheless, some a priori knowledge is available
about typical RIRs which can be leveraged by tailored algorithms to
speed up adaptation [3]. One class of such algorithms extends the
LMS by introducing a (positive) definite diagonal matrix step-size.
Algorithms of this kind are not restricted to acoustic echo cancella-
tion, e.g., they are also useful for polynomial identification of static
nonlinearities [4] and they occur in the analysis of cascaded adaptive
filters [5]. The corresponding update equation reads

ŵk = ŵk−1 + µkLkukẽa,k, (1)

where uk = [uk, . . . , uk−M+1] is the input delay vector containing
M consecutive samples of the input sequence uk, ŵk is the adap-
tively estimated vector of echo weights, µk > 0 is a scalar step-size,
and ẽa,k is the error between the actual echo signal and the output
generated by the current estimate ŵk−1, distorted by an additive
noise sequence vk. Moreover, (1) contains the positive definite diag-
onal matrix step-size Lk = diagMi=1{li,k} that is of special interest
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in this paper. It will be shown that the choice of Lk can cause di-
vergence even under conformance with commonly known stability
criteria. Based on the results of [6], which introduces the terms of
symmetric and asymmetric gradient type algorithms, we will clarify
why time-variant matrix step-sizes destroy the robustness of such
algorithms. In the deterministic analysis of adaptive filters, a typi-
cal [2, 7–9] meaning of the term robustness refers to the ability of
an adaptive algorithm to keep the energy ratio of estimation errors
and unknown disturbances bounded from above. Applied to (1), this
would mean that

sup

{
‖w̃N‖22 +

∑N
i=0 |ẽa,i|

2

‖w̃−1‖22 +
∑N
i=0 |vi|2

}
≤ A, (2)

with some constant A < ∞, N being any arbitrary positive integer,
and k = −1 denoting the initial state of the algorithm. Addition-
ally, we introduced the parameter error vector w̃k = w − ŵk that
represents the error between the unknown vector of echo weights w
and the estimated parameters ŵk. In this paper, we will use a related
notion of robustness that can roughly be considered as unconditional
convergence of w̃k. More details can be found in Sec. 3.

This paper presents in Sec. 2 two gradient algorithms with ma-
trix step-size in order to demonstrate the occurring robustness issues.
This will give motivation for the analysis presented in Sec. 3, which
investigates the reason why a matrix step-size introduces the risk of
divergence. Moreover, Sec. 3 presents a systematic method to reveal
such diverging behaviour and applies this method to a very basic al-
gorithm with matrix step-size. Eventually, Sec. 4 provides a detailed
investigation why only a time-variant matrix step-size can actually
lead to divergence. The paper closes with conclusions in Sec. 5.

2. MOTIVATION

For a constant matrix step-size, the l2-stability of such algorithms
has been studied in [8] and a stability analysis in the mean square
sense was provided in [10]. However, for a time-varying matrix step-
size, to the authors knowledge, equivalent results do not exist. One
of the few works on this topic even showed that convergence of the
parameter error vector requires to impose impractically strong con-
ditions on the matrix step-size [11].

2.1. Exponentially Weighted & Proportionate Normalised LMS

The Exponentially Weighted Step-Size Normalised LMS (EWNLMS)
proposed by Makino et al. [12] is an algorithm with a time-invariant
diagonal matrix step-size. It is based on the observation that RIRs
typically show an exponential decay, which motivated the authors to
introduce a constant diagonal matrix step-size LM = diagM−1

i=0 {δ
i},

0 < δ < 1, with exponentially decaying entries. A second member
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out of the class of matrix step-size LMS algorithms is the Propor-
tionate Normalised LMS (PNLMS) introduced by Duttweiler [10].
This algorithm leverages the sparsity of the RIR in order to speed
up the learning rate. This is achieved by introducing a time-varying
diagonal matrix step-size LD,k that basically weights each dimen-
sion i of the update of ŵk by the magnitude of its corresponding
weight ŵi,k−1 (refer to [10] for further details). Both algorithms
also normalise the scalar step-size by the power of the input delay
vector, i.e.,

µk = µ̄/‖uk‖22, (3)

with some step-size factor µ̄ > 0, leading to a normalised LMS
(NLMS) with matrix step-size. The PNLMS has been continuously
investigated and extended since its introduction in [10], and many
recent papers are based on it directly or on variants of the LMS that
use a diagonal matrix step-size [3, 13–16].

2.2. Hidden divergence for time-variant matrices

In [5,6], the robustness, in the sense of unconditional convergence of
the parameter error vector, was considered for so called asymmetric
gradient type algorithms. Such algorithms are obtained as soon as
the direction of descent does not coincide with the direction of the
regression vector. Clearly, (1), and thus, the two above mentioned
echo cancellation schemes, belong to this class, since in general,
Lkuk will not be in parallel (or anti-parallel) with uk. It can be ob-
served that such algorithms have an inherent potential to divergence,
as soon as the step-size is larger than zero. Such tendency to di-
verge can be revealed by simulations that excite the adaptive system
with a worst-case sequence, which aims to maximise the energy of
the parameter error vector in each adaptation step (see Sec. 3.1 for
details). Fig. 1 presents the results of a Monte Carlo simulation for
the EWNLMS and for the PNLMS. The latter is implemented ex-
actly as in [10] (with δ[10] = ρ[10] = 10−4, where we augmented the
symbols by a subscript to indicate that they have a different mean-
ing than the ones used in this paper). For both algorithms, all sig-
nals and systems were real-valued. For each Monte Carlo run, the
M = 500 filter weights of the reference system w were randomly
generated from a zero-mean Gaussian distribution, then it was scaled
to have norm ‖w‖ = 1, and finally each tap i = 1, . . . ,M of w was
weighted by a factor δi−1, with δ = 0.95, leading to a random but
(in the mean) exponentially decaying reference impulse response.
The update error in (1) is given by ẽa,k = w̃T

k−1uk + vk, with the
additive statistically independent zero-mean white Gaussian noise vk
of variance σ2

v = 10−6. Two simulation sets were performed. In the
first set, the input samples uk were randomly drawn from a uniform
distribution over the interval [−1, 1]. The corresponding behaviour
of the relative misadjustment

mw(k) = E

{
‖w̃k−1‖22
‖w̃−1‖22

}
, (4)

with the initial value w̃−1 and the expectation E{·}, shows the ex-
pected converging behaviour. The second set of simulations uses
for the input samples the same interval, i.e., uk ∈ [−1, 1], but it
searches in each adaptation step for the above mentioned worst-case
vector ûk (cf. (7)) by generating Nwc = 500 realisations and choos-
ing that one which maximises ‖w̃k‖2. As can be observed in Fig. 1,
for the EWNLMS, the learning rate reduces but it still tends to con-
verge. What is striking, is that the PNLMS diverges although it
looked stable in the first set of simulations with randomly chosen in-
put. The reason for this difference between EWNLMS and PNLMS
motivates the investigations presented in the rest of this paper.
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Fig. 1. EWNLMS and PNLMS with random excitation and with
worst-case sequences.

3. DIVERGENCE OF THE MATRIX STEP-SIZE LMS

In [6], gradient type algorithms were separated into two classes,
symmetric and asymmetric algorithms. For the primer, the direc-
tion of descent is parallel to the direction of the regression vec-
tor. For such algorithms, stability has been investigated in several
senses and corresponding bounds for the step-size are available, e.g.,
in [1, 2, 6, 7]. The asymmetric algorithms are characterised by a di-
rection of descent that differs from the direction of the regression
vector. Clearly, for Lk 6= I, the algorithm in (1), belongs to this
class since in general uk ∦ Lkuk. In the noiseless case, (1) repre-
sents a recursion of the form

w̃k = Bkw̃k−1 with Bk = I− µkLkukuT
k. (5)

At this point, we are now able to clarify the here used notion of ro-
bustness, as also done in [5, 6]. It focuses on the convergence of the
sequence formed by the energy ‖w̃k‖22 of the parameter error vec-
tor. If this sequence does not diverge under any circumstances, the
algorithm is said to be robust. As can be seen from (5), the matrix
sequence of time-variant linear mappings Bk will decide on this, if
a bounded initial parameter error is assumed. Clearly, when consid-
ering the adaptation up to k → ∞, to ensure a bounded parameter
error in the limit, the product

∏∞
k=0 Bk has to have a finite induced

2-norm, or equivalently, its maximum singular value is required to be
finite. In the sequel, we will focus on the local behaviour of Bk and
start with a brief summary of the results from [6], which presents a
singular value analysis of the matrix Bk. Accordingly, for µk 6= 0,
the matrix Bk can be shown to have M − 2 unit singular values
and at least one singular value that is larger than one. In the sequel,
we assume without loss of generality (WOLOG) that the latter is
σ1,k and the second non-unit singular value is σ2,k. Consequently,
such algorithms tend to diverge, provided that the mode of σ1,k is
sufficiently excited. It is also found that for a constant matrix step-
size, i.e., Lk = L, the Cholesky factorisation of L always allows
to map (1) to an equivalent symmetric algorithm. Consequently, for
constant matrix step-sizes the above mentioned diverging behaviour
cannot be observed.

To analyse the algorithm in (1), we follow the idea from [6] and
try to identify the conditions which lead in the noiseless case to

D
(p)
w,k = ‖w̃k‖p − ‖w̃k−1‖p ≥ 0 or Q

(p)
w,k =

‖w̃k‖p
‖w̃k−1‖p

≥ 1,

(6)
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where we can use any p-norm. This is possible due to the equiv-
alence of these vector norms [17, p.272]. For the 2-norm and for
given µk and w̃k−1, this obviously leads to the question, which uk
results in a Bk such that its right singular vector v1,k, corresponding
to the largest singular value σ1,k, is in parallel to w̃k−1. This would
lead to the one specific vector ûk which actually maximises D(2)

w,k

and Q(2)
w,k, i.e.,

ûk = arg max
uk

∥∥[I− µkLkukuT
k]w̃k−1

∥∥
2

‖w̃k−1‖2
. (7)

A not as strict alternative would be to require the right singu-
lar vector v2,k that belongs to the second non-unit singular value
σ2,k ≤ 1 ≤ σ1,k to be orthogonal to w̃k−1. This would still be
sufficient to satisfy (6), since we know from the analysis in [6] that
all other singular values are greater or equal to one. Note that σ2,k

can also become larger than one, however then, the algorithm will
inevitably never converge. Ensuring σ2,k ≤ 1 is always possible by
choosing a sufficiently small step-size.

3.1. Construction of worst-case sequences

We are thus interested in constructing such worst-case sequences
systematically. We first notice that the (left and right) singular vec-
tors that correspond to σ1,k and σ2,k are contained in the hyper-
plane S that is spanned by uk and Lkuk. Accordingly, the singular
vectors belonging to the other M − 2 unit singular values, are or-
thogonal to S. Consequently, the worst-case excitation vector ûk
and the a priori parameter error vector w̃k−1 are related by

w̃k−1 = ak[αkI + Lk]ûk ⇔ ûk =
1

ak
[αkI + Lk]−1w̃k−1, (8)

with some adequately chosen factors ak, αk ∈ R. Inserting (8) and
the update error ẽa,k for vk ≡ 0, leads to the following update equa-
tion for worst-case excitation by ûk

w̃k = w̃k−1 −
µk
a2k

w̃H
k−1[αkI + Lk]−1w̃k−1

· Lk[αkI + Lk]−1w̃k−1. (9)

Calculating Q(1)
w,k from (6) leads to

Q
(1)
w,k =

∑M
i=1 qi,k|w̃i,k−1|∑M
i=1 |w̃i,k−1|

, (10)

with

qi,k =
|w̃i,k|
|w̃i,k−1|

=

∣∣∣∣1− µk
a2k

li,k
αk + li,k

M∑
j=1

|w̃k−1,j |2

αk + lj,k︸ ︷︷ ︸
gi,k(αk)

∣∣∣∣∣ . (11)

Determining from this expression the ak and αk that lead to the
worst-case is even for very low dimensions M a challenging if
not hopeless task. Although not presented here, note that also the
2-norm leads to expressions that have an infeasible complexity.
Consequently, we need to simplify (11) to make it more accessible.
This can be achieved by the fact that

M

min
i=1
{qi,k} ≤ Q(1)

w,k ≤
M

max
i=1
{qi,k}. (12)

Therefore, the algorithm diverges at least for one sequence, if for
almost all k, ak and αk can be found such that minMi=1{qi,k} > 1.
Similarly, if maxMi=1{qi,k} < 1 is fulfilled for almost all k and all
pairs of ak and αk, convergence is ensured.

3.2. The Bipartite matrix LMS

We will now briefly present one of the simplest LMS algorithms
with diagonal time-variant matrix step-size to illustrate the use of
the above introduced method. We consider the algorithm in (1) with

Lk =

[
IM/2 0
0 ηkIM/2

]
=

[
1 0
0 ηk

]
⊗ IM/2, (13)

where we assumed that M is even and where ηk is some positive
scalar. The symbol ⊗ denotes the Kronecker product. Clearly,
the li,k in (11) can either be one or ηk and also the sum in (11)
reduces to an addition of two fractions. Such algorithms are typi-
cally encountered when two adaptive filters are concatenated. Also
adaptive Wiener and Hammerstein models can be mapped to such
an algorithm [5, 18]. Even in the here considered simple case,
an explicit solution for ak and αk is hard to find. However, the
above presented insight can be used to reduce the space in which
the worst-case vectors ûk have to be searched for. Introducing
the vectors u1,k and u2,k, both of length M/2, for the upper and
the lower half of uk, respectively, we applied a small normalized
step-size of µk = 0.1/[‖u1,k‖22 + ηk‖u2,k‖22] for which stability
in the mean square sense, as well as, in the l2-sense is guaranteed.
We performed two sets of Monte Carlo simulations, a first one with
constant ηk = η = 2, and a second one, with ηk being time-variant
and randomly selected from a uniform distribution between zero
and two. Figures 2(a) and 2(b) depict the corresponding simulation
results, respectively. We considered two cases of excitation se-
quences, one generates the samples uk from a uniform distribution
on the interval [−

√
6

2
,
√
6

2
]. The other one generates a sequence of

uk ∈ {−1, 1} with identical probability. The latter is termed ‘bipo-
lar’ in Fig. 2. Additionally, we considered the linear combiner (LC)
case, i.e., no shift dependency among the elements of uk, and the
finite impulse response (FIR) filter case.

In Fig. 2(a), depicting the fixed matrix step-size case, using LCs,
the relative misadjustment shows some potential to grow initially,
but then, it levels out at some steady-state or even tends to converge.
If the LCs are replaced by FIR filters, independently of the excita-
tion sequence, the relative misadjustment monotonously decreases.
In contrast, for the time-variant matrix step-size, in Fig. 2(b), all
but the FIR filter case with bipolar excitation lead to diverging be-
haviour. The reason for the convergence of the FIR filter case with
bipolar input is that the available space for the construction of ûk is
dramatically small. Actually, in each adaptation step, there are only
two possible values to choose from.

Note that for the bipolar excitation sequence, it was possible to
generate the worst-case sequences by a full search, since even in
the LC case, the search depth was only 1 024 for the chosen dimen-
sion M = 10. For uniform excitation, a worst-case search over
1 024 random realisations was performed. Additionally, for the sim-
ulations using LCs, the search space was restricted to S. All re-
sults were obtained by averaging over 500 Monte Carlo runs. Al-
though not presented here, further simulations showed that unstable
behaviour can also be observed if the entries li,k are changing only
slightly.

4. ANALYSIS OF THE DIFFERENCE BETWEEN
CONSTANT AND TIME-VARIANT MATRIX STEP-SIZES

What still remains open, is the discussion why a time-variant ma-
trix step-size makes such a big difference. To do so, we consider
a simple example with constant Lk = L = diag{1, 2, 3}. Then
clearly, the three poles pi of the functions gi,k(αk) in (11) are at the
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(a) Fixed matrix step-size (same legend as below).
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Fig. 2. The worst-case learning behaviour of the Bipartite PNLMS
algorithm under various conditions: FIR filter vs. linear com-
biner (LC), bipolar vs. uniform excitation.

positions p = [−1,−2,−3]T, where we collected them in a vec-
tor p of length M = 3 with descending order. The left-hand side
of Fig. 3 depicts the gi,0(α0), under the assumption that the ini-
tial parameter error vector w̃−1 = [1, 1, 1]T. For divergence, we
require maxMi=1{qi,k} < 1. As (11) shows, this is fulfilled if the
corresponding gi,k(αk) < 0 or gi,k(αk) > 1. It can be verified
that the latter case can always be prevented by normalising the step-
size as µk = µ̄(uT

kLkuk)−1 with an appropriate positive step-size
factor µ̄. For µ̄ = 2, this normalisation actually coincides with the
bound for mean square stability [10]. Consequently, we only need to
consider the case gi,k(αk) < 0. Since we require ûk to be finite, αk
must not become equal to one of the poles of gi,k(αk) (to see this,
cf. (8)). From Fig. 3, we find that choosing αk > p1 or αk < pM
leads to gi,k(αk) > 0 for all i. Therefore, the αk which leads to the
worst-case fulfils pM < αk < p1. Obviously, it is never possible
to achieve gi,k(αk) < 0 for all i. A worst-case search would then
lead to p2 � αk < p1. If we assume WOLOG that the diagonal
of L is also sorted, however, in ascending order, this will lead to a
growth of the parameter error at positions i = 2, . . . ,M but w̃1,k

will contract. Since the gi,k(αk) depend on w̃k−1, the change of
parameter errors also changes the gi,k(αk) with progressing adapta-
tion. This process will go on until w̃1,k reaches zero, if we exclude
the worst-case condition that the algorithmic update freezes. Then,
the pole p1 is cancelled and only the poles p2 to pM remain. This
situation is depicted on the right-hand side of Fig. 3. However, in

at beginning (k = 0) k > K ⇒ w̃k,1 = 0

g
1
,k
(α

k
)

−50
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50
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Fig. 3. Behaviour of the functions gi,k(αk) in (11). The left-hand
side depicts the initial state, i.e., k = 0 and under the assumption
that w̃k−1 = [1, 1, 1]T. The right-hand side shows the situation
after convergence of the first dimension, i.e., k > K. The func-
tions g2,k(αk) and g3,k(αk) are assumed to be adequately scaled.
On both sides, the blue dashed line indicates a possible value α̂
for αk, as it my be provided by a worst-case search (left-hand side:
α̂0 = −1.125, right-hand side: α̂K = −2.5).

contrast to the left-hand side, where w̃−1 = [1, 1, 1]T, here, the de-
picted curves represent adequately scaled versions of g2,k(αk) and
g3,k(αk). Now, the worst-case search will find p3 � αk < p2,
which leads to an analogous progress of the parameter error vec-
tor. This cancellation of poles will go on until one but the last pole
is compensated. Then, gi,k(αk) = 0 for i = 1, . . . ,M − 1 and
gM,k(αk) > 0, which finally also lets w̃M,k decrease. Eventually,
this shows that ‖w̃k‖2 will remain bounded.

If we now assume that at least one of the poles keeps changing
its position, then a permanent cancellation of the corresponding di-
mension will not be achievable. Therefore, for the worst-case search,
it will always be possible to find an αk which leads to an increase
of the ‖w̃k‖2. By this, we recognize that the use of a time-variant
matrix step-size gives reason for diverging behaviour of the algo-
rithm (1). Of course, as the simulation examples in Sec. 3.2 have
shown, if the space from which ûk can be chosen is restricted, di-
vergence might be prevented.

5. CONCLUSION

We presented a convergence analysis of the (N)LMS with diagonal
matrix step-size and demonstrated that the use of a time-variant ma-
trix introduces the risk of diverging behaviour. Actually, only strong
restrictions on the allowed excitation sequences can ensure conver-
gence and thus stability in the l2-sense. Based on a 1-norm analy-
sis, the subtle but important difference between constant and varying
matrix step-sizes was investigated. Simulations for the very basic bi-
partite matrix step-size LMS also showed the numerical relevance of
the presented approach. Although closed form results can barely
be found for the construction of worst-case sequences, the numeri-
cal evaluation still suffices to reveal divergent behaviour for broadly
used algorithms such as the PNLMS.
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